OGF-EU: Using IT to reduce Carbon Emissions and Delivering the Potential of Energy Efficient Computing OGF25, Catania, Italy 5 March 2009

VM Management for Green Data Centres with the OpenNebula Virtual Infrastructure Engine

Ignacio M. Llorente

dsa-research.org

Distributed Systems Architecture Research Group Universidad Complutense de Madrid

Objectives

- Workshop:
 - Development of a reference model for the management of energy efficiency in virtualized distributed environments
- Presentation:
 - Introduce the OpenNebula Virtual Infrastructure Engine
 - Propose a model for the dynamic management of VMs in distributed infrastructures
 - Describe a first prototype of scheduler for distribution of VM workloads based on energy requirements

What is OpenNebula?

VM Management for Green Data Centres with OpenNebula

Extending the Benefits of Virtualization to Clusters

- Dynamic deployment and re-placement of virtual machines on a pool of physical resources
- Transform a rigid distributed physical infrastructure into a flexible and agile virtual infrastructure

Public

Cloud

- Private Cloud: Virtualization of cluster or data-center for internal users
- Backend of Public Cloud: Internal management of the infrastructure
- Cloud Interoperation: On-demand access to public clouds

Virtual Machine Management Model

VM Management for Green Data Centres with OpenNebula

Service as Management Entity

- Service structure
 - Service components run in VMs
 - Inter-connection relationship
 - Placement constraints
- The VM Manager is service agnostic
- Provide infrastructure context

Distributed VM Management Model

Benefits

VM Management for Green Data Centres with OpenNebula

System Manager

- Centralized management of VM workload and distributed infrastructures
- Support for VM placement policies: balance of workload, server consolidation...
- **Dynamic resizing** of the infrastructure
- **Dynamic partition** and isolation of clusters
- Support for heterogeneous workload
- **Dynamic scaling** of private infrastructure to meet fluctuating demands

Service Manager

On-demand provision of virtual machines

System Integrators

- Open and flexible architecture and interfaces, open source software
- Integration with any component in the virtualization/cloud ecosystem, such as cloud providers, hypervisors, cloud-like interfaces, virtual image managers, service managers, schedulers...

Features

Feature	Function
User Interface	 Unix-like CLI to manage VM life-cycle and physical boxes XML-RPC API and libvirt interface
Scheduler	Requirement/rank matchmakerGeneric framework to build any scheduler
Virtualization Management	Xen, KVM and libvirt connectorsAmazon EC2
Image Management	 General mechanisms to transfer and clone VM images
Network Management	 Definition of virtual networks to interconnect VMs
Fault Tolerance	 Persistent database backend to store host and VM information
Scalability	 Tested in the management of hundreds of VMs
Installation	 Installation on a UNIX cluster front-end without requiring new services in the remote resources
	 Distributed in Ubuntu 9.04 (Jaunty Jackalope), due to be released in April 2009

Open and Flexible Architecture

Use Cases

VM Management for Green Data Centres with OpenNebula

On-demand Scaling of Computing Clusters

- Elastic execution of a SGE computing cluster
- Dynamic growth of the number of worker nodes to meet demands using EC2
- Private network with NIS and NFS
- EC2 worker nodes connect via VPN

On-demand Scaling of Web Servers

- Elastic execution of the NGinx web server
- The capacity of the elastic web application can be dynamically increased web client or decreased by adding or removing NGinx instances

Ecosystem

VM Management for Green Data Centres with OpenNebula

Schedulers

- Haizea: Open-source VM-**≈ H**aizea based lease management Your leases run as VMs architecture (allows AR of on a Xen or KVM cluster. With OpenNebula capacity). Lease requests "I need 10 nodes, each with 2 CPUs, 4GB of memory, from 2pm to 4pm" Simulation Scheduling statistics, reports, graphs, etc. Interfaces
- Libvirt: Provides an abstraction of a whole cluster of resources as one host, hiding specific hypervisor details.
- Nimbus: Can be used as a WSRF or EC2 front-end.

Plug-Ins

• ElasticHosts: Enables the dynamically increase capacity of your virtualized infrastructure to meet fluctuating peak demands using a cloud provider.

Model for VM Management in Distributed Infrastructures

VM Management for Green Data Centres with OpenNebula

Centralized management of VMs and resources

- VM life-cycle management
- VM image management
- Virtual network management
- Fault tolerance

Automation of VM placement:

- · Balance of workload
- Server consolidation
- Placement constraints and affinity
- Advance reservation of capacity
- SLA commitment

Monitoring and Accounting

VM Management for Green Data Centres with OpenNebula

VM Life-cycle and Monitoring

Attribute	Description
ID	VM identifier
NAME	Name of the VM
STAT	Status
CPU	CPU percentage used by the VM
MEM	Memory used by the VM
HOSTNAME	Host where the VM is running
TIME	Time since submission

Monitoring and Accounting

VM Management for Green Data Centres with OpenNebula

Resource Monitoring

Attribute	Description
HID	Host ID
NAME	Host name
RVM	Number of running VMs
TCPU	Total CPU (percentage)
FCPU	Free CPU (percentage)
ACPU	Available CPU (not allocated by VMs)
ТМЕМ	Total memory
FMEM	Free memory
STAT	Host status

Flexible Architecture

- Easy addition of new VM and resource metrics (energy efficiency metrics)
- Experimenting with Advanced Configuration and Power Interface (ACPI) for power monitoring

Accounting

Statistics of host usage, VM image transfer times....

Controlling

VM Management for Green Data Centres with OpenNebula

VM Controlling

Action	Description
create	Submits a new virtual machine, adding it to the VM pool
deploy	Starts a previously submitted VM on a specific host
shutdown	Shutdown an already deployed VM
livemigrate	Migrates a running VM to another host without downtime
migrate	Saves a running VM and starts it again in the specified host
stop	Stops a running VM
Release/hold	Releases/hold a VM from/to hold state
Suspend/resume	Saves/resume a VM

Resource Controlling

Action	Description
Create/delete	Adds/removes a machine to/from the pool
Enable/disable	Enables/disables host

Resource Schedulers

VM Management for Green Data Centres with OpenNebula

Requirement/rank Matchmaker (default)

 First placement of pending VMs to resources meeting the "requirements" and sorted using a "rank" expression

Haizea Lease Manager (University of Chicago)

Advance reservation of capacity and queuing of best effort requests

RESERVOIR Policy Engine (IBM Haifa/Elsa Datamat)

≈HAIZEA

 Policy-driven probabilistic admission control and dynamic placement optimization to satisfy site level management policies

VM Consolidation Scheduler

- Periodic re-placement of VMs for server consolidation and suspension/resume of physical resources
- *Experimental* for supporting research on distribution of VM workload based on energy requirements and policies

VM Management for Green Data Centres with OpenNebula

Control Flow

 Complements the work done by the requirement/rank matchmaker for first deployment of VMs in pending state

VM Management for Green Data Centres with OpenNebula

A Simple Example

- 1) Initial situation
- Exec. 1: Packing algorithm in the VM
 Consolidation Scheduler requests a migration
 3)
- ⁴⁾ **Exec. 2**: VM Consolidation Scheduler "disables" a physical resource

- **Exec. 3**: VM consolidation scheduler
- ⁵⁾ "enables" a physical resource because there are pending VMs
- The requirement/rank matchmaker schedules the pending VMs

VM Management for Green Data Centres with OpenNebula

A Simple Example

dsa-research.org

VM Management for Green Data Centres with OpenNebula

Future Work: Energy Policy-driven Scheduler

Monitoring

- Power and heat metrics (ACPI specification)
- Past history (trends) of resources and workload

Enactment of policies

• Management of power-state of the resources (ACPI specification)

Policies

- Support for "generic energy policies"
- Selection of the VMs to migrate and the target host for migration
- ...

dsa-research.org

Conclusions

- Workshop:
 - Development of a reference model for the management of energy efficiency in virtualized distributed environments
- Presentation:
 - Introduce the OpenNebula Virtual Infrastructure Engine
 - Propose a model for the dynamic management of VMs in distributed infrastructures
 - Describe a first prototype of scheduler for distribution of VM workloads based on energy requirements

THANK YOU FOR YOUR ATTENTION!!! More info, downloads, mailing lists at www.OpenNebula.org

Real demo at booth number 4

Acknowledgements

- Rubén S. Montero
 Tino Vazquez
- Javier Fontan
- Rafael Moreno
- Raúl Sampedro