
1/31

Distributed Systems Architecture Research Group
Universidad Complutense de Madrid

OGF25/EGEE User Forum
Catania, Italy
2 March 2009

Constantino Vázquez Blanco
Javier Fontán Muiños

Raúl Sampedro

2/31

Outline

•  Part I – Open Nebula Overview
•  What is OpenNebula
•  Benefits
•  Features
•  Architecture

•  Part II – Deploying and using OpenNebula on a simple scenario
•  Physical architecture
•  VM description
•  Image Management
•  Network Management
•  VM lifecycle

•  Part III – Building a scalable SGE cluster

3/31

Part I – OpenNebula Overview

Part I
OpenNebula Overview

4/31

What is OpenNebula?
The OpenNebula Virtual Infrastructure Engine

•  Dynamic deployment and re-placement of virtual machines on a pool of
physical resources

•  Transform a rigid distributed physical infrastructure into a flexible and agile
virtual infrastructure

Extending the Benefits of Virtualization to Clusters

VMM VMM

OpenNebula

Public Cloud
 Interface

OpenNebula

•  Backend of Public Cloud: Internal
management of the infrastructure

•  Private Cloud: Virtualization of
cluster or data-center for internal
users

•  Cloud Interoperation: On-demand
access to public clouds

Internal users External users

Public
Cloud

5/31

What is OpenNebula?
Virtual Machine Management Model

•  Service structure
•  Service components run in VMs
•  Inter-connection relationship
•  Placement constraints

•  The VM Manager is service agnostic
•  Provide infrastructure context

Service as Management Entity

Distributed VM Management Model

Distributed VM
Management System

The three pillars of a
Distributed VM Manager

N
etw

orking

Im
age

M
anagem

ent

Virtualization

6/31

Benefits

•  Centralized management of VM workload and distributed infrastructures

•  Support for VM placement policies: balance of workload, server
consolidation…

•  Dynamic resizing of the infrastructure

•  Dynamic partition and isolation of clusters

•  Support for heterogeneous workload

•  Dynamic scaling of private infrastructure to meet fluctuating demands

System Manager

Service Manager

•  On-demand provision of virtual machines

System Integrators
•  Open and flexible architecture and interfaces, open source software
•  Integration with any component in the virtualization/cloud ecosystem, such as

cloud providers, hypervisors, cloud-like interfaces, virtual image managers,
service managers, schedulers…

7/31

Features

Feature Function
User Interface •  Unix-like CLI to manage VM life-cycle and physical boxes

•  XML-RPC API and libvirt interface
Scheduler •  Requirement/rank matchmaker

•  Generic framework to build any scheduler

Virtualization
Management

•  Xen, KVM and libvirt connectors
•  Amazon EC2

Image Management •  General mechanisms to transfer and clone VM images

Network Management •  Definition of virtual networks to interconnect VMs

Fault Tolerance •  Persistent database backend to store host and VM
information

Scalability •  Tested in the management of hundreds of VMs
Installation •  Installation on a UNIX cluster front-end without requiring new

services in the remote resources
•  Distributed in Ubuntu 9.04 (Jaunty Jackalope), due to be

released in April 2009

8/31

Architecture

Scheduler
Command Line

Interface
Other Tools

Transfer
Driver

Virtual Machine
Driver

Information
Driver

Request Manager
(XML-RPC)

SQL Pool

VM
Manager

Host
Manager

VN
Manager

D
ri

v
e

rs
T
o

o
ls

C
o

re

OpenNebula Architecture

9/31

Architecture

Scheduler
Command Line

Interface
Other Tools

Transfer
Driver

Virtual Machine
Driver

Information
Driver

Request Manager
(XML-RPC)

SQL Pool

VM
Manager

Host
Manager

VN
Manager

D
ri

v
e

rs
T
o

o
ls

C
o

re

•  Request manager: Provides a XML-RPC
interface to manage and get information
about ONE entities.

•  SQL Pool: Database that holds the state of ONE entities.

•  VM Manager (virtual machine): Takes care of the VM life cycle.

•  Host Manager: Holds the information about hosts and how to
interact with them.

•  VN Manager (virtual network): This component is in charge of
generating MAC and IP addresses.

Core

10/31

Architecture

Scheduler
Command Line

Interface
Other Tools

Transfer
Driver

Virtual Machine
Driver

Information
Driver

Request Manager
(XML-RPC)

SQL Pool

VM
Manager

Host
Manager

VN
Manager

D
ri

v
e

rs
T
o

o
ls

C
o

re

•  Scheduler: This component searches for
physical hosts to deploy newly defined VMs

•  Command Line Interface: Commands used to manage OpenNebula
entities.
•  onevm: Virtual Machines

•  create, list, migrate…
•  onehost: Hosts

•  create, list, disable…
•  onevnet: Virtual Networks

•  create, list, delete…

Tools

11/31

Architecture

Scheduler
Command Line

Interface
Other Tools

Transfer
Driver

Virtual Machine
Driver

Information
Driver

Request Manager
(XML-RPC)

SQL Pool

VM
Manager

Host
Manager

VN
Manager

D
ri

v
e

rs
T
o

o
ls

C
o

re

•  Transfer Driver: Takes care of the images.

•  cloning, deleting, creating swap image…

•  Virtual Machine Driver: Manager of the lifecycle of a virtual machine

•  deploy, shutdown, poll, migrate…

•  Information Driver: Executes scripts in physical hosts to gather
information about them

•  total memory, free memory, total cpus, cpu consumed…

OpenNebula Drivers

12/31

Architecture

•  Scheduler is a separated process, just like command line interface.
•  Drivers are also separated processes using a simple text messaging

protocol to communicate with OpenNebula Core Daemon (oned)

OpenNebula Core

Transfer

Manager Driver

Virtual Machine

Driver

Information

Driver

Scheduler CLI

Unix Pipes (diver message protocol)

XML-RPC Interface

Process separation

13/31

Part II – OpenNebula Overview

Part II
Deploying and using OpenNebula on a

simple scenario

14/31

Physical Architecture

FRONT-END

ONED

SSH

Xen Hypervisor

SSH

CLUSTER NODE 1

Xen Hypervisor

SSH

CLUSTER NODE 2

OpenNebula engine from the physical point of view

15/31

VM Description

Option Description
NAME •  Name that the VM will get for description purposes.
CPU •  Percentage of CPU divided by 100 required for the Virtual

Machine.

OS (KERNEL, INITRD) •  Path of the kernel and initrd files to boot from.

DISK (SOURCE,
TARGET, CLONE,
TYPE)

•  Description of a disk image to attach to the VM.

NIC (NETWORK) •  Definition of a virtual network the VM will be attached to.

•  Multiple disk an network interfaces can be specified just adding more
disk/nic statements.

•  To create swap images you can specify TYPE=swap, SIZE=<size in
MB>.

•  By default disk images are cloned, if you do not want that to happen
CLONE=no can be specified and the VM will attach the original image.

Common template options

16/31

VM Description

NAME = vm-example	
CPU = 1	
MEMORY = 512	

# --- kernel & boot device ---	
OS = [
 kernel = “/vmlinuz”,	
 initrd = “/initrd.img”,	
 root = “sda”]	

# --- 2 disks ---	
DISK = [
 source = “/images/etch/disk.img”,	
 target = “sda”]	

DISK = [
 type = swap,	
 size = 1024,	
 target = “sdb”]	

# --- 1 NIC ---	
NIC = [network=“public”]	

Example

17/31

Image Management

Image

Repository
ONED

$ONE_LOCATION/var

VM_DIR

CLUSTER NODE

VM_DIR

CLUSTER NODE

VM_DIR

CLUSTER NODE

Shared FS

Architecture for a cluster configured with shared directory.

18/31

Image Management

DISK = [
 type = “floppy|disk|cdrom|swap”,	
 source = “path_to_disk_image_file|physical_dev”,	
 size = “size_in_GB”,	
 target = “device_to_map_disk”,	
 bus = “ide|scsi|virtio|xen”,	
 readonly = “yes|no”, 	
 clone = “yes|no”, 	
 save = “path_to_disk_image_file”]	

DISK = [
 source = “/images/etch/disk.img”,	
 target = “sda”]	

DISK = [
 type = swap,	
 size = 1024,	
 target = “sdb”]	

Disk description options

Disk description examples

VM description example

19/31

Network Management
Physical configuration

20/31

Network Management

NAME = “Private LAN”	
TYPE = RANGED	
BRIDGE = eth0	
NETWORK_SIZE = 250	
NETWORK_ADDRESS= 10.0.0.0	

NAME = “Public LAN”	
TYPE = FIXED	
BRIDGE= eth1	
LEASES= [IP=130.10.0.1,MAC=50:20:20:20:20:20]	
LEASES= [IP=130.10.0.2]	

NIC = [
 network = “name_of_the_virtual_network”,	
 ip = “ip_address”, 	
 bridge = “name_of_bridge_to_bind_if”, 	
 target = “device_name_to_map_if”, 	
 mac = “HW_address”, 	
 script = “path_to_script_to_bring_up_if”]	

Ranged network definition

Fixed network definition

Network information in VM description

21/31

VM Lifecycle

PENDING PROLOG RUNNING EPILOG DONE

SUSPENDED

HOLD MIGRATE

STOPPED

BOOT SHUTDOWN

VM lifecycle states

22/31

VM Lifecycle

•  After submitting a VM description to ONE it is added to the database
and its state is set to PENDING.

•  In this state IP and MAC addresses are also chosen if they are not
explicitly defined.

•  The scheduler awakes every 30 seconds and looks for VM
descriptions in PENDING state and searches for a physical node that
meets its requirements. Then a deploy XML-RPC message is sent to
oned to make it run in the selected node.

•  Deployment can be also made manually using Command Line
Interface:

⇒ onevm deploy <vmid> <hostid>	

PENDING PROLOG RUNNING EPILOG DONEBOOT SHUTDOWN

Pending State

23/31

VM Lifecycle

•  In PROLOG state the Transfer Driver prepares the images to be used
by the VM.

•  Transfer actions:
•  CLONE: Makes a copy of a disk image file to be used by the VM. If Clone option for that file is set to

false and the Transfer Driver is configured for NFS then a symbolic link is created.
•  MKSWAP: Creates a swap disk image on the fly to be used by the VM if it is specified in the VM

description.	

PENDING PROLOG RUNNING EPILOG DONEBOOT SHUTDOWN

Prolog State

24/31

VM Lifecycle

•  In this state a deployment file specific for the virtualization technology
configured for the physical host is generated using the information
provided in the VM description file. Then Virtual Machine Driver sends
deploy command to the virtual host to start the VM.

•  The VM will be in this state until deployment finishes or fails.	

PENDING PROLOG RUNNING EPILOG DONEBOOT SHUTDOWN

Boot State

25/31

VM Lifecycle

•  While the VM is in RUNNING state it will be periodically polled to get
its consumption and state.

•  In SHUTDOWN state Virtual Machine Driver will send the shutdown
command to the underlying virtual infrastructure.

PENDING PROLOG RUNNING EPILOG DONEBOOT SHUTDOWN

Running and Shutdown States

26/31

VM Lifecycle

•  In EPILOG state the Transfer Manager Driver is called again to
perform this actions:

•  Copy back the images that have SAVE=yes option.
•  Delete images that were cloned or generated by MKSWAP.	

PENDING PROLOG RUNNING EPILOG DONEBOOT SHUTDOWN

Epilog State

27/31

Part III – Building a scalable SGE cluster

Part III
Building a scalable SGE cluster

 Use Case Demonstration

28/31

Use Cases

On-demand Scaling of Computing Clusters

On-demand Scaling of Web Servers

•  Elastic execution of a SGE computing
cluster

•  Dynamic growth of the number of worker
nodes to meet demands using EC2

•  Private network with NIS and NFS
•  EC2 worker nodes connect via VPN

•  Elastic execution of the NGinx web
server

•  The capacity of the elastic web
application can be dynamically increased
or decreased by adding or removing
NGinx instances

29/31

Scaling SGE cluster with OpenNebula and EC2

Infrastructure Perspective
Use Case

30/31

Scaling SGE cluster with OpenNebula and EC2
Use Case

Local private network

Bridge

PHYSICAL NODE

Worker

Node

Worker

Node

Bridge

PHYSICAL NODE

Worker

Node

Worker

Node

Bridge

PHYSICAL NODE

Worker

Node

Worker

Node

B
ri

d
g

e

PHYSICAL NODE

SGE Fontend

BridgeWorker

Node

Worker

Node

Worker

Node

VPN Tunnels

Internet

Connection

Amazon EC2

Service Perspective

31/31

Scaling SGE cluster with OpenNebula and EC2

Network Scheme
Use Case

Contextualization

•  VMs need to be configured to execute a script (vmscript.sh) at boot time

•  Sets the IP based on the MAC of the network interface as it knows the
network scheme

•  Preliminary version, future OpenNebula versions will support more
advanced contextualization

•  Contextualization Virtual Block Devices (VBD)

32/31

THANK YOU FOR YOUR ATTENTION!!!
More info, downloads, mailing lists at
www.OpenNebula.org

Acknowledgements

•  Ignacio M. Llorente

•  Rubén S. Montero

OpenNebula is partially funded by the “RESERVOIR– Resources and
Services Virtualization without Barriers” project
EU grant agreement 215605

•  Rafael Moreno

www.reservoir-fp7.eu/

Elastic Management of a Grid Computing Service with OpenNebula and Amazon EC2

