
Public Cloud Computing with OpenNebula 1.4

C12G Labs S.L.

Rev20100611



Copyright ©2010 C12G Labs

Although the information in this document has been care-
fully reviewed, C12G Labs does not warrant it to be free of errors
or omissions. C12G Labs reserves the right to make corrections,
updates, revisions, or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY C12G
LABS THE SOFTWARE DESCRIBED IN THIS DOCUMENT
IS PROVIDED ON ”AS IS” BASIS, WITHOUT ANY WAR-
RANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES CONCERNING THE INSTALLATION,
USE OR PERFORMANCE OF PRODUCT. C12G AND ITS
SUPPLIERS DISCLAIM ANY AND ALL WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF MERCHANTABIL-
ITY FITNESS FOR A PARTICULAR PURPOSE AND/OR
NON-INFRINGEMENT. C12G AND ITS SUPPLIERS DO
NOT WARRANT THAT PRODUCT WILL MEET USER’S
REQUIREMENTS OR THAT THE OPERATION THEREOF
WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT
ERRORS WILL BE CORRECTED. YOU ARE SOLELY
RESPONSIBLE FOR DETERMINING THE APPROPRIATE-
NESS OF USING THE WORK AND ASSUME ANY RISKS
ASSOCIATED WITH YOUR EXERCISE OF PERMISSIONS
UNDER THIS LICENSE.

Document redistribution
and translation

This document is protected by copyright and you may not re-
distribute it or translate it into another language, in part or in
whole.

Trademarks C12G is a pending trademark in the European Union and in the
United States. All other tradermakrs are property of their respec-
tive owners. Other product or company names mentioned may be
trademarks or trade names of their respective companies.



Contents

1 Getting Started 5
1.1 Building a Public Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 What is a Public Cloud? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 The User View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 How the System Operates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 OGF OCCI API 7
2.1 Configuration Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Requirements & Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Starting the Cloud Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Cloud Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Usage Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 OCCI Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 User Account Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Hello OCCI Cloud! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 EC2-Query API subset 15
3.1 Configuration Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Requirements & Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Starting the Cloud Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.5 Cloud Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Usage Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 User Account Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Hello Cloud! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

©C12G Labs S.L. 3/21 Rev20100611



©C12G Labs S.L. 4/21 Rev20100611



Chapter 1

Getting Started

1.1 Building a Public Cloud

1.1.1 What is a Public Cloud?

Figure 1.1:

A Public Cloud is an extension of a Private Cloud to expose RESTful Cloud interfaces.
Cloud interfaces can be added to your Private or Hybrid Cloud if you want to provide partners or
external users with access to your infrastructure, or to sell your overcapacity. Obviously, a local cloud
solution is the natural back-end for any public cloud.

1.1.2 The User View

The following interfaces provide a simple and remote management of cloud (virtual) resources
at a high abstraction level:

� EC2 Query subset

� RESERVOIR Cloud Interface and OGF OCCI (planned for 1.4.2)

Users will be able to use commands that clone the functionality of the EC2 Cloud service.
Starting with a working installation of an OS1 residing on an .img file, with three simple steps a user
can launch it in the cloud.

First, they will be able to upload it to the cloud using:
After the image is uploaded in OpenNebula repository, it needs to be registered to be used in the

cloud:
Now the user can launch the registered image to be run in the cloud:
Additionally, the instance can be monitored with:

1Operating System

©C12G Labs S.L. 5/21 Rev20100611



1.1.3 How the System Operates

There is no modification in the operation of OpenNebula to expose Cloud interfaces. Users
can interface the infrastructure using any Private or Public Cloud interface.

©C12G Labs S.L. 6/21 Rev20100611



Chapter 2

OGF OCCI API

2.1 Configuration Guide

2.1.1 Overview

The OpenNebula OCCI is a web service that enables you to launch and manage virtual machines in your
OpenNebula installation using the latest draft of the OGF OCCI API specification. The OpenNebula
OCCI service is implemented upon the new OpenNebula Cloud API1 (OCA) layer that exposes the
full capabilities of an OpenNebula private cloud; and Sinatra, a widely used light web framework.

Figure 2.1:

The current implementation includes all the resource referenced in the latest draft of the OGF OCCI
API1 specification, namely:

� Compute: launching, retrieve, update and deletion

� Network: creation, retrieve and deletion

� Storage: upload, retrieve and deletion

The following sections explain how to install and configure the OCCI service on top of a running
OpenNebula cloud.

The OpenNebula OCCI service provides an OCCI interface to your cloud instance, that can be
used alongside the native OpenNebula CLI, the libvirt interface or even the EC2 Query API1

The OpenNebula distribution includes the tools needed to use the OpenNebula OCCI service

2.1.2 Requirements & Installation

You must have an OpenNebula site properly configured and running to install the OpenNebula OCCI
service, be sure to check the OpenNebula Installation and Configuration Guides to set up your private
cloud first. This guide also assumes that you are familiar with the configuration and use of OpenNebula.

The OpenNebula OCCI service was installed during the OpenNebula installation, so you just need to
install the following packages to meet the runtime dependencies:

� The Sinatra web framework and the thin web server:

1Application Programming Interface

©C12G Labs S.L. 7/21 Rev20100611

http://forge.ogf.org/sf/go/doc15731
http://www.occi-wg.org
http://www.sinatrarb.com/


� The libraries for the Storage Repository and Client Tools:

curb is just neccessary to upload files faster. If not installed, upload file with occi-storage -M

that uses the multipart-post library

2.1.3 Configuration

The service is configured through the $ONE_LOCATION/etc/occi-server.conf file, where you can set up
the basic operational parameters for the OCCI service, namely:

� Administration Account, the web server need to perform some operation using the oneadmin

account, mainly to check the identity of the cloud users. You have to specify the USER and PASSWORD

of oneadmin.

� Connection Parameters, the xml-rpc service of the oned daemon; and the server and port for
the OpenNebula OCCI service web server. This will be the URL2 of your cloud.

� Storage Repository, the storage repository provides an easy-to-use repository to store Compute
images. You need to specify the DATABASE and IMAGE_DIR for this service.

� Computes, the name of the bridge that the VM needs to connect to in the physical host to get
network connection. See the Managing Virtual Networks guide for more details.

� Filesystem format, the default format in which the empty filesystems (needed for certain Com-
putes) will be formatted in. In case of ommission, by default is ext3.

� Compute Types, a VM_TYPE defines the name and the OpenNebula templates for each type of
Compute, to enable different sizes of Computes.

The following table summarizes the available options:

VARIABLE VALUE
USER name for the oneadmin account
PASSWORD oneadmin password
ONE XMLRPC oned xmlrpc service, http://localhost:2633/RPC2
SERVER FQDN for your cloud
PORT for incoming connections
DATABASE for the Storage repository
IMAGE DIR to store cloud images
BRIDGE Name of the bridge needed to create Networks
FS FORMAT to store cloud images
VM TYPE The Computes types for your cloud

The SERVER must be a FQDN, do not use IP’s here
IMAGE_DIR must be an existing directory
Preserve bash syntax in the occi-server.conf file

Example:

# OpenNebula administrator user

USER=oneadmin

PASSWORD=mypass

# OpenNebula sever contact information

ONE_XMLRPC=http://localhost:2633/RPC2

# Host and port where OCCI service will run

SERVER=cloud.opennebula.org

2Uniform Resource Locator

©C12G Labs S.L. 8/21 Rev20100611

http://localhost:2633/RPC2


PORT=4567

# Configuration for the image repository

DATABASE=/srv/cloud/one/var/occi.db

IMAGE_DIR=/srv/cloud/images/

# Configuration for OpenNebula’s Virtual Networks

BRIDGE=eth0

# Default format for FS

FS_FORMAT=ext3

# VM types allowed and its template file (inside templates directory)

VM_TYPE=[NAME=small, TEMPLATE=small.erb]

VM_TYPE=[NAME=medium, TEMPLATE=medium.erb]

VM_TYPE=[NAME=large, TEMPLATE=large.erb]

Configuring a SSL proxy

OpenNebula OCCI runs natively just on normal HTTP3 connections. If the extra security provided by
SSL4 is needed, a proxy can be set up to handle the SSL4 connection that forwards the petition to the
OCCI Service and takes back the answer to the client.

This set up needs:

� A server certificate for the SSL4 connections

� An HTTP3 proxy that understands SSL4

� OCCI Service configuration to accept petitions from the proxy

If you want to try out the SSL4 setup easily, you can find in the following lines an example to set
a self-signed certificate to be used by a lighttpd configured to act as an HTTP3 proxy to a correctly
configured OCCI Service.

Let’s assume the server were the lighttpd proxy is going to be started is called cloudserver.org.
Therefore, the steps are:

1. Snakeoil server certificate We are going to generate a snakeoil certificate. If using an Ubuntu
system follow the next steps (otherwise your milleage may vary, but not a lot):

� Install the ssl-cert package

� Generate the certificate

� As we are using lighttpd, we need to append the private key with the certificate to obtain a server
certificate valid to lighttpd

2. lighttpd as a SSL HTTP proxy You will need to edit the /etc/lighttpd/lighttpd.conf

configuration file and

� Add the following modules (if not present already)

– mod access

– mod alias

– mod proxy

– mod accesslog

3Hyper Text Transfer Protocol
4Secure Sockets Layer

©C12G Labs S.L. 9/21 Rev20100611



– mod compress

� Change the server port to 443 if you are going to run lighttpd as root, or any number above 1024
otherwise:

server.port = 8443

� Add the proxy module section:

#### proxy module

## read proxy.txt for more info

proxy.server = ( "" =>

("" =>

(

"host" => "127.0.0.1",

"port" => 4567

)

)

)

#### SSL engine

ssl.engine = "enable"

ssl.pemfile = "/etc/lighttpd/server.pem"

The host must be the server hostname of the computer running the EC2Query Service, and the port the
one that the EC2Query Service is running on.

3.OCCI Service configuration The econe.conf needs to define the following:

# Host and port where OCA server will run

SERVER=127.0.0.1

PORT=4567

# SSL proxy that serves the API (set if is being used)

SSL_SERVER=cloudserver.org

Once the lighttpd server is started, OCCI petitions using HTTPS uris can be directed to https://cloudserver.org:8443,
that will then be unencrypted, passed to localhost, port 4567, satisfied (hopefully), encrypted again and
then passed back to the client.

Defining Compute types

You can define as many Compute types as you want, just:

� Create a template for the new type and place it in $ONE_LOCATION/etc/occi_templates. This
template will be completed with the data for each cloud occi-vm create request, and then submitted
to OpenNebula. You can start by modifying the small.erb example, to adjust it to your cloud:

NAME = <%= @vm_info[’NAME’]%>

CPU = 1

MEMORY = 1024

OS = [ kernel = /vmlinuz,

initrd = /initrd.img,

©C12G Labs S.L. 10/21 Rev20100611

https://cloudserver.org:8443


root = sda1,

kernel_cmd = "ro xencons=tty console=tty1"]

<% if vm_info[’STORAGE’]

vm_info[’STORAGE’].each do |key, image|

image=[image].flatten

case key

when "SWAP"

image.each do |img|

%>

DISK = [ type = "swap",

size=<%= img[’size’]%>,

target=<%= img[’dev’]%> ]

<%

end

when "DISK"

image.each do |img|

%>

DISK = [ type = "disk",

target=<%= img[’dev’]%>,

source=<%= img[’source’]%>,

image_id=<%= img[’image’]%> ]

<%

end

when "FS"

image.each do |img|

%>

DISK = [ type = "fs",

target=<%= img[’dev’]%>,

size=<%= img[’size’]%>,

format=<%= @config[:fs_format]||"ext3"%> ]

<% end %>

<% end %>

<% end %>

<% end %>

<% if vm_info[’NETWORK’] and vm_info[’NETWORK’][’NIC’] %>

<% vm_info[’NETWORK’][’NIC’].each do |nic| %>

NIC = [

<% if nic[’ip’] %>

IP=<%= nic[’ip’] %>,

<% end %>

NETWORK="<%= nic[’network’]%>",

NETWORK_ID=<%= nic[’network_id’] %>

]

<% end %>

<% end %>

INSTANCE_TYPE = <%= vm_info[:instance_type ]%>

The templates are processed by the OCCI service to include specific data for the instance, you
should not need to modify the <%= . . . %> compounds. Start by adjusting the OS5, CPU and MEMORY
to your needs

2.1.4 Starting the Cloud Service

To start the OCCI service just issue the following command

5Operating System

©C12G Labs S.L. 11/21 Rev20100611



You can find the econe server log file in $ONE_LOCATION/var/occi-server.log if OpenNebula has
been installed in standalone, or in /var/log/one/occi-server.log if installed in system-wide.

To stop the OCCI service:

2.1.5 Cloud Users

The cloud users have to be created in the OpenNebula system by oneadmin using the oneuser utility.
Once a user is registered in the system, using the same procedure as to create private cloud users, they can
start using the system. The users will authenticate using the HTTP basic authentication with user-ID

their OpenNebula’s username and password their OpenNebula’s password.

2.2 Usage Guide

The OpenNebula OCCI API1 is a RESTful service to create, control and monitor cloud resources based
on the latest draft of the OGF OCCI API specification. Interactions with the resources are done through
HTTP3 verbs (GET, POST, PUT and DELETE).

2.2.1 OCCI Resources

There are three kind of resources, listed below with their implemented methods:

� Storage:

– Upload: using a multi-part HTTP3 POST.

– Retrieve: using a HTTP3 GET.

� Network:

– Upload: using a HTTP3 POST.

– Retrieve: using a HTTP3 GET.

� Compute:

– Upload: using a HTTP3 POST.

– Update: using a HTTP3 PUT.

– Retrieve: using a HTTP3 GET.

Collections of resources have the following implemented methods for all Pool Resources are:

� POST: Creates a new resource within the colletion, with the representation in the POST body.

� GET: Retrieves the representation of the collection.

2.2.2 User Account Configuration

An account is needed in order to use the OpenNebula OCCI cloud. The cloud administrator will be
responsible for assigning these accounts, which have a one to one correspondence with OpenNebula
accounts, so all the cloud administrator has to do is check the configuration guide to setup accounts, and
automatically the OpenNebula OCCI cloud account will be created.

In order to use such an account, the end user can make use of clients programmed to access the
services described in the previous section. For this, she has to set up her environment, particularly the
following aspects:

� Authentication: This can be achieved in two different ways, here listed in order of priority (i.e.
values specified in the argument line supersede environmental variables)

– Using the commands arguments. All the commands accept a username (as the OpenNeb-
ula username) and a password (as the OpenNebula password)

©C12G Labs S.L. 12/21 Rev20100611

http://tools.ietf.org/html/rfc1945#section-11.1
http://forge.ogf.org/sf/go/doc15731
http://www.occi-wg.org


– If the above is not available, the ONE AUTH variable will be checked for authentication
(with the same used for OpenNebula CLI, pointing to a file containing a single line: ”user-
name:password”).

� Server location: The command need to know where the OpenNebula OCCI service is running.
You can pass the OCCI service endpoint using the ”url”flag in the commands. If that is not present,
the OCCI URL2 environment variable is used (in the form of a http URL2, including the port
if it is not the standard 80). Again, if the OCCI URL2 variable is not present, it will default to
”http://localhost:4567”

The OCCI URL2 has to use the FQDN of the OCCI Service

2.2.3 Hello OCCI Cloud!

Lets take a walk through a typical usage scenario. In this brief scenario it will be shown how to upload an
image to the OCCI OpenNebula Storage repository, how to create a Network in the OpenNebula OCCI
cloud and how to create Compute resource using the image and the network previously created.

� Storage

Assuming we have a working Gentoo installation residing in an .img file, we can upload it into the
OpenNebula OCCI cloud using the following OCCI representation of the image:

1 <DISK>

2 <NAME>GentooImage</NAME>
3 <URL> f i l e : //// images/ gentoo . img</URL>
4 </DISK>

Next, using the occi-storage command we will create the Storage resource:

$ ./occi-storage –url http://localhost:4567 –username oneadmin –password opennebula create im-
agexml <DISK><ID>ab5c9770-7ade-012c-f1d5-00254bd6f386</ID><NAME>GentooImage</NAME><SIZE>1000</SIZE

The user should take note of this ID, as it will be needed to add it to the Compute resource.

� Network

The next step would be to create a Network resource

1 <NETWORK>

2 <NAME>MyServiceNetwork</NAME>
3 <ADDRESS>192 . 1 68 . 1 . 1</ADDRESS>
4 <SIZE>200</SIZE>

5 </NETWORK>

Next, using the occi-network command we will create the Network resource:

$ ./occi-network –url http://localhost:4567 –username oneadmin –password opennebula create vnxml
<NIC><ID>23</ID><NAME>MyServiceNetwork</NAME><ADDRESS>192.168.1.1</ADDRESS><SIZE>200</SIZE

� Compute

The last step would be to create a Compute resource referencing the Storage and Networks resource
previously created by means of their ID, using a representation like the following:

1 <COMPUTE>
2 <NAME>MyCompute</NAME>
3 <STORAGE>

4 <SWAP s i z e=”1024 ” dev=”sda2 ”/>
5 <DISK image=”ab5c9770−7ade−012c−f1d5 −00254bd6f386 ” dev=”sda1 ”/>
6 <FS s i z e=”512 ” format=”ext3 ” dev=”sda3 ”/>
7 </STORAGE>

8 <NETWORK>

9 <NIC network=”23 ” ip=”192 . 1 68 . 0 . 9 ”/>
10 </NETWORK>

11 <INSTANCE TYPE>smal l</INSTANCE TYPE>

12 </COMPUTE>

©C12G Labs S.L. 13/21 Rev20100611

http://localhost:4567


Next, using the occi-compute command we will create the Compute resource:
$ ./occi-compute –url http://localhost:4567 –username tinova –password opennebula create ˜/vmxml

<COMPUTE><ID>17</ID><NAME>MyCompute</NAME><STATE>PENDING</STATE><STORAGE><DISK
image=”ab5c9770-7ade-012c-f1d5-00254bd6f386”dev=”sda1”/><FS size=”512”format=”ext3”dev=”sda3”/><SWAP
size=”1024”dev=”sda2”/></STORAGE><NETWORK><NIC network=”23”ip=”192.168.0.9”/><NIC
network=”23” ip=”192.168.1.1”/></NETWORK></COMPUTE>

You can obtain more information on how to use the above commands accessing their Usage help
passing them the -h flag

In platforms where ’curl’ is not available or buggy (i.e. CentOS), a ’-M’ option is available to
perform upload using the native ruby Net::HTTP3 using http multipart

©C12G Labs S.L. 14/21 Rev20100611



Chapter 3

EC2-Query API subset

3.1 Configuration Guide

3.1.1 Overview

The OpenNebula EC2 Query is a web service that enables you to launch and manage virtual machines in
your OpenNebula installation through the Amazon EC2 Query Interface. In this way, you can use any
EC2 Query tool or utility to access your Private Cloud. The EC2 Query web service is implemented upon
the new OpenNebula Cloud API1 (OCA) layer that exposes the full capabilities of an OpenNebula
private cloud; and Sinatra, a widely used light web framework.

Figure 3.1:

The current implementation includes the basic routines to use a Cloud, namely: image upload and
registration, and the VM run, describe and terminate operations. The following sections explains you
how to install and configure the EC2 Query web service on top of a running OpenNebula cloud.

The OpenNebula EC2 Query service provides a Amazon EC2 Query API1 compatible interface to
your cloud, that can be used alongside the native OpenNebula CLI or the libvirt interface.

The OpenNebula distribution includes the tools needed to use the EC2 Query service.

3.1.2 Requirements & Installation

You must have an OpenNebula site properly configured and running to install the EC2 Query service, be
sure to check the OpenNebula Installation and Configuration Guides to set up your private cloud first.
This guide also assumes that you are familiar with the configuration and use of OpenNebula.

1Application Programming Interface

©C12G Labs S.L. 15/21 Rev20100611

http://docs.amazonwebservices.com/AWSEC2/2009-04-04/DeveloperGuide/index.html?using-query-api.html
http://www.sinatrarb.com/


The EC2 Query service was installed during the OpenNebula installation, so you just need to install
the following packages to meet the runtime dependencies:

� The Amazon EC2 Query API1 library:

� The Sinatra web framework and the thin web server:

� The libraries for the Image Repository and Client Tools (packages names are taken from the Ubuntu
distribution):

3.1.3 Configuration

The service is configured through the $ONE_LOCATION/etc/econe.conf file, where you can set up the
basic operational parameters for the EC2 Query web service, namely:

� Administration Account, the web server need to perform some operation using the oneadmin

account, mainly to check the identity of the cloud users. You have to specify the USER and PASSWORD

of oneadmin.

� Connection Parameters, the xml-rpc service of the oned daemon; and the server and port for
the EC2 URL2. This will be the URL2 of your cloud.

� Image Repository, the image repository provides a easy-to-use and simple replacement of the
S3 service to store and upload images. You need to specify the DATABASE and IMAGE_DIR for this
service.

� Virtual Machine Types, a VM_TYPE defines the name and the OpenNebula templates for each
type.

The following table summarizes the available options:

VARIABLE VALUE
USER name for the oneadmin account
PASSWORD oneadmin password
ONE XMLRPC oned xmlrpc service, http://localhost:2633/RPC2
SERVER FQDN for your cloud
PORT for incoming connections
DATABASE for the Image repository
IMAGE DIR to store cloud images
VM TYPE The VM types for your cloud

The SERVER must be a FQDN, do not use IP’s here.
IMAGE_DIR must be an existing directory
Preserve bash syntax in the econe.conf file

Example:

# OpenNebula administrator user

USER=oneadmin

PASSWORD=mypass

# OpenNebula sever contact information

ONE_XMLRPC=http://localhost:2633/RPC2

# Host and port where OCA server will run

SERVER=cloud.opennebula.org

PORT=4567

# SSL proxy that serves the API (set if is being used)

2Uniform Resource Locator

©C12G Labs S.L. 16/21 Rev20100611

http://localhost:2633/RPC2


#SSL_SERVER=fqdn.of.the.server

# Configuration for the image repository

DATABASE=/srv/cloud/one/var/ec2.db

IMAGE_DIR=/srv/cloud/images/

# VM types allowed and its template file (inside templates directory)

VM_TYPE=[NAME=m1.small, TEMPLATE=m1.small.erb]

VM_TYPE=[NAME=m1.medium, TEMPLATE=m1.medium.erb]

Configuring a SSL proxy

OpenNebula EC2 Query Service runs natively just on normal HTTP3 connections. If the extra security
provided by SSL4 is needed, a proxy can be set up to handle the SSL4 connection that forwards the
petition to the EC2 Query Service and takes back the answer to the client.

This set up needs:

� A server certificate for the SSL4 connections

� An HTTP3 proxy that understands SSL4

� EC2Query Service configuration to accept petitions from the proxy

If you want to try out the SSL4 setup easily, you can find in the following lines an example to set
a self-signed certificate to be used by a lighttpd configured to act as an HTTP3 proxy to a correctly
configured EC2 Query Service.

Let’s assume the server were the lighttpd proxy is going to be started is called cloudserver.org.
Therefore, the steps are:

1. Snakeoil server certificate We are going to generate a snakeoil certificate. If using an Ubuntu
system follow the next steps (otherwise your milleage may vary, but not a lot):

� Install the ssl-cert package

� Generate the certificate

� As we are using lighttpd, we need to append the private key with the certificate to obtain a server
certificate valid to lighttpd

2. lighttpd as a SSL HTTP proxy You will need to edit the /etc/lighttpd/lighttpd.conf

configuration file and

� Add the following modules (if not present already)

– mod access

– mod alias

– mod proxy

– mod accesslog

– mod compress

� Change the server port to 443 if you are going to run lighttpd as root, or any number above 1024
otherwise:

3Hyper Text Transfer Protocol
4Secure Sockets Layer

©C12G Labs S.L. 17/21 Rev20100611



server.port = 8443

� Add the proxy module section:

#### proxy module

## read proxy.txt for more info

proxy.server = ( "" =>

("" =>

(

"host" => "127.0.0.1",

"port" => 4567

)

)

)

#### SSL engine

ssl.engine = "enable"

ssl.pemfile = "/etc/lighttpd/server.pem"

The host must be the server hostname of the computer running the EC2Query Service, and the port the
one that the EC2Query Service is running on.

3. EC2Query Service configuration The econe.conf needs to define the following:

# Host and port where OCA server will run

SERVER=127.0.0.1

PORT=4567

# SSL proxy that serves the API (set if is being used)

SSL_SERVER=cloudserver.org

Once the lighttpd server is started, EC2Query petitions using HTTPS uris can be directed to https://cloudserver.org:8443
that will then be unencrypted, passed to localhost, port 4567, satisfied (hopefully), encrypted again and
then passed back to the client.

Defining VM types

You can define as many Virtual Machine types as you want, just:

� Create a template for the new type and place it in $ONE_LOCATION/etc/ec2query_templates. This
template will be completed with the data for each cloud run-instance request, and then submitted
to OpenNebula. You can start by modifying the m1.small.erb example, to adjust it to your cloud:

NAME = eco-vm

CPU = 1

MEMORY = 1024

OS = [ kernel = /vmlinuz,

initrd = /initrd.img,

root = sda1,

kernel_cmd = "ro xencons=tty console=tty1"]

DISK = [ source = <%= @vm_info[:img_path] %>,

clone = no,

©C12G Labs S.L. 18/21 Rev20100611

https://cloudserver.org:8443


target = sda1,

readonly = no]

NIC = [ network = "Public EC2" ]

IMAGE_ID = <%= @vm_info[:img_id] %>

INSTANCE_TYPE = <%= @vm_info[:instance_type ]%>

� Add a VM_TYPE attribute to $ONE_LOCATION/etc/eco.conf with the NAME for the new type and
the TEMPLATE that should be use:

VM_TYPE=[NAME=m1.large, TEMPLATE=m1.large.erb]

The templates are processed by the EC2 server to include specific data for the instance, you should
not need to modify the <%= . . . %> compounds. Start by adjusting the OS5, CPU and MEMORY to
your needs.

Networking for the Cloud VMs

By default, the templates used to instantiate the virtual machines includes a NIC interface to be attached
to a virtual network named Public EC2. You have to create this network using the onevnet utility

with the IP’s you want to lease to the VMs created with the EC2 Query service.

3.1.4 Starting the Cloud Service

To start the EC2 Query service just issue the following command
You can find the econe server log file in $ONE_LOCATION/var/econe-server.log if OpenNebula has

been installed in standalone, or in /var/log/one/econe-server.log if installed in system-wide.
To stop the EC2 Query service:

3.1.5 Cloud Users

The cloud users have to be created in the OpenNebula system by oneadmin using the oneuser utility.
Once a user is registered in the system, using the same procedure as to create private cloud users,
they can start using the system. The users will authenticate using the Amazon EC2 procedure with
AWSAccessKeyId their OpenNebula’s username and AWSSecretAccessKey their OpenNebula’s password.

3.2 Usage Guide

The EC2 Query API offers the functionality exposed by Amazon EC2: upload images, register them,
run, monitor and terminate instances, etc. In short, Query requests are HTTP3 or HTTPS requests that
use the HTTP3 verb GET or POST and a Query parameter.

OpenNebula implements a subset of the EC2 Query interface, enabling the creation of public clouds
managed by OpenNebula. In this first release of the API1 implementation, the methods implemented
are:

� upload image: Uploads an image to the repository manager

� register image: Registers an image (previously uploaded in the repository manager) in order to
be launched, check this link for the method description.

� describe images: Lists all registered images belonging to one particular user.

* run instances: Runs an instance of a particular image (that needs to be referenced), check this link for the method description

5Operating System

©C12G Labs S.L. 19/21 Rev20100611

http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?using-query-api.html
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?using-query-api.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/index.html?ApiReference-query-RegisterImage.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/index.html?ApiReference-query-RegisterImage.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-RunInstances.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-RunInstances.html


*

**[[http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-DescribeInstances.html|d

instances]]**: Outputs a list of launched images belonging to one particular user,

[[http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-RunInstances.html|check

this link for the method description]].

� terminate instances: Shutdown a virtual machine(or cancel, depending on its state), check this link for the method

3.2.1 User Account Configuration

An account is needed in order to use the OpenNebula cloud. The cloud administrator will be responsible
for assigning these accounts, which have a one to one correspondence with OpenNebula accounts, so all
the cloud administrator has to do is check the configuration guide to setup accounts, and automatically
the OpenNebula cloud account will be created.

In order to use such an account, the end user can make use of clients programmed to access the
services described in the previous section. For this, she has to set up his environment, particularly the
following aspects:

� Authentication: This can be achieved in three different ways, here listed in order of priority (i.e.
values specified in the argument line supersede environmental variables)

– Using the commands arguments. All the commands accept an Access Key (as the Open-
Nebula username) and a Secret Key (as the OpenNebula password)

– Using EC2 ACCESS KEY and EC2 SECRET KEY environment variables the same way
as the arguments

– If none of the above is available, the ONE AUTH variable will be checked for authentication
(with the same used for OpenNebula CLI).

� Server location: The command need to know where the OpenNebula cloud service is running.
That information needs to be stored within the EC2 URL2 environment variable (in the form of
a http URL2, including the port if it is not the standard 80).

The EC2_URL2 has to use the FQDN of the EC2-Query Server

3.2.2 Hello Cloud!

Lets take a walk through a typical usage scenario. In this brief scenario it will be shown how to upload
an image to the OpenNebula image repository, how to register it in the OpenNebula cloud and perform
operations upon it.

� upload image

Assuming we have a working Gentoo installation residing in an .img file, we can upload it into the
OpenNebula cloud using the econe-upload command:

The user should take note of this ImageId, as it will be needed to register the image.

� register image

The next step should be registering the image to enable its instantiation. We can do this with the
econe-register command:

� describe images

We will need the ImageId to launch the image, so in case we forgotten we can list registered images
using the econe-describe-images command:

* run instance
Once we recall the ImageId, we will need to use the econe-run-instances command to launch an

Virtual Machine instance of our image:
We will need the InstanceId to monitor and shutdown our instance, so we better write down that

15.

©C12G Labs S.L. 20/21 Rev20100611

http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-TerminateInstances.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-TerminateInstances.html


� describe instances

If we have too many instances launched and we don’t remember everyone of them, we can ask econe-
describe-instances to show us which instances we have submitted.

We can see that the instances with Id 15 has been launched, but it is still pending, i.e., it still needs
to be deployed into a physical host. If we try the same command again after a short while, we should be
seeing it running as in the following excerpt:

* terminate instances
After we put the Virtual Machine to a good use, it is time to shut it down to make space for other Vir-

tual Machines (and, presumably, to stop being billed for it). For that we can use the econe-terminate-
instances passing to it as an argument the InstanceId that identifies our Virtual Machine:

You can obtain more information on how to use the above commands accessing their Usage help
passing them the -h flag

©C12G Labs S.L. 21/21 Rev20100611


	Getting Started
	Building a Public Cloud
	What is a Public Cloud?
	The User View
	How the System Operates


	OGF OCCI API
	Configuration Guide
	Overview
	Requirements & Installation
	Configuration
	Starting the Cloud Service
	Cloud Users

	Usage Guide
	OCCI Resources
	User Account Configuration
	Hello OCCI Cloud!


	EC2-Query API subset
	Configuration Guide
	Overview
	Requirements & Installation
	Configuration
	Starting the Cloud Service
	Cloud Users

	Usage Guide
	User Account Configuration
	Hello Cloud!



