
Private Cloud Computing with OpenNebula 1.4

C12G Labs S.L.

Rev20100611

Copyright ©2010 C12G Labs

Although the information in this document has been care-
fully reviewed, C12G Labs does not warrant it to be free of errors
or omissions. C12G Labs reserves the right to make corrections,
updates, revisions, or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY C12G
LABS THE SOFTWARE DESCRIBED IN THIS DOCUMENT
IS PROVIDED ON ”AS IS” BASIS, WITHOUT ANY WAR-
RANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES CONCERNING THE INSTALLATION,
USE OR PERFORMANCE OF PRODUCT. C12G AND ITS
SUPPLIERS DISCLAIM ANY AND ALL WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF MERCHANTABIL-
ITY FITNESS FOR A PARTICULAR PURPOSE AND/OR
NON-INFRINGEMENT. C12G AND ITS SUPPLIERS DO
NOT WARRANT THAT PRODUCT WILL MEET USER’S
REQUIREMENTS OR THAT THE OPERATION THEREOF
WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT
ERRORS WILL BE CORRECTED. YOU ARE SOLELY
RESPONSIBLE FOR DETERMINING THE APPROPRIATE-
NESS OF USING THE WORK AND ASSUME ANY RISKS
ASSOCIATED WITH YOUR EXERCISE OF PERMISSIONS
UNDER THIS LICENSE.

Document redistribution
and translation

This document is protected by copyright and you may not re-
distribute it or translate it into another language, in part or in
whole.

Trademarks C12G is a pending trademark in the European Union and in the
United States. All other tradermakrs are property of their respec-
tive owners. Other product or company names mentioned may be
trademarks or trade names of their respective companies.

Contents

1 Getting Started 5
1.1 Building a Private Cloud . 5

1.1.1 What is a Private Cloud? . 5
1.1.2 The User View . 5
1.1.3 How the System Operates . 7

1.2 Planning the Installation . 7
1.2.1 Overview . 7
1.2.2 System Requirements . 8
1.2.3 Preparing the Cluster . 9
1.2.4 Planning Checklist . 12

1.3 Platform Notes . 12
1.3.1 Ubuntu/Kubuntu . 12
1.3.2 Debian Lenny . 13
1.3.3 Fedora 8 . 13
1.3.4 Gentoo . 13
1.3.5 Arch . 13
1.3.6 CentOS 5 / RHEL 5 . 14
1.3.7 openSUSE 11 . 14
1.3.8 MAC OSX 10.4 10.5 . 15

1.4 Installing the Software . 15
1.4.1 Verifying the Installation . 16

1.5 Configuring OpenNebula . 16
1.5.1 OpenNebula Components . 16
1.5.2 Start & Stop OpenNebula . 18
1.5.3 OpenNebula Users . 19
1.5.4 OpenNebula Hosts . 19
1.5.5 Logging and Debugging . 20

2 Configuring the Virtualization Adaptors 21
2.1 Xen Adaptor . 21

2.1.1 Xen Configuration . 21
2.1.2 Driver Files . 21
2.1.3 Configuration . 22
2.1.4 Xen Specific Template Attributes . 23
2.1.5 Testing . 23

2.2 KVM Adaptor . 23
2.2.1 KVM Configuration . 23
2.2.2 Driver Files . 24
2.2.3 Configuration . 24
2.2.4 KVM Specific Template Attributes . 25
2.2.5 Testing . 27

2.3 VMware Adaptor . 27
2.3.1 VMware Configuration . 27
2.3.2 Front-end Configuration . 28

©C12G Labs S.L. 3/56 Rev20100611

2.3.3 Driver Installation . 28
2.3.4 Driver Files . 28
2.3.5 Configuration . 28
2.3.6 VMware Template Attributes . 30
2.3.7 Using the VMware Driver . 30

3 Customizing your Private Cloud 31
3.1 Storage and Image Management . 31

3.1.1 The Image Life-Cycle . 31
3.1.2 Physical Cluster Configuration . 32
3.1.3 Configuration Interface . 34
3.1.4 Customizing and Extending . 35

3.2 Networking . 38
3.2.1 Overview . 38
3.2.2 Isolating the Virtual Networks . 38

3.3 Information and Monitoring . 41
3.3.1 Requirements . 41
3.3.2 Driver Files . 41
3.3.3 OpenNebula Configuration . 42
3.3.4 Testing . 43

3.4 Scheduling Policies . 43
3.4.1 Overview . 43
3.4.2 The Match-making Algorithm . 43
3.4.3 Placement Policies . 43
3.4.4 The Haizea Scheduler . 44

4 Using your Private Cloud 45
4.1 Managing Virtual Machines . 45

4.1.1 Virtual Machine Model . 45
4.1.2 User Environment . 46
4.1.3 Virtual Machine Template . 47
4.1.4 Command Line Interface . 48
4.1.5 Usage Scenarios . 49

4.2 Managing Virtual Networks . 49
4.2.1 Defining a Virtual Network . 50
4.2.2 Adding and Deleting Virtual Networks . 51
4.2.3 Getting a Lease . 52
4.2.4 Using the Leases within the Virtual Machine . 52

4.3 Contextualizing Virtual Machines . 52
4.3.1 Overview . 52
4.3.2 Defining context . 53
4.3.3 Using Context . 54
4.3.4 EXAMPLE . 54

4.4 A VM sample with context & network . 55

©C12G Labs S.L. 4/56 Rev20100611

Chapter 1

Getting Started

1.1 Building a Private Cloud

1.1.1 What is a Private Cloud?

Figure 1.1:

The aim of a Private Cloud is not to expose to the world a cloud interface to sell capacity over the
Internet, but to provide local users with a flexible and agile private infrastructure to run vir-
tualized service workloads within the administrative domain. OpenNebula virtual infrastructure
interfaces expose user and administrator functionality for virtualization, networking, image
and physical resource configuration, management, monitoring and accounting.

1.1.2 The User View

An OpenNebula Private Cloud provides infrastructure users with an elastic platform for fast delivery
and scalability of services to meet dynamic demands of service end-users. Services are hosted
in VMs, and then submitted, monitored and controlled in the Cloud by using the virtual infrastructure
interfaces:

� Command line interface

� XML1-RPC2 API3

� Libvirt virtualization API3 or any of its management tools

1Extensible Markup Language
2Remote Procedure Call
3Application Programming Interface

©C12G Labs S.L. 5/56 Rev20100611

Figure 1.2:

Lets do a sample session to illustrate the functionality provided by the OpenNebula CLI for
Private Cloud Computing. First thing to do, check the hosts in the physical cluster:

We can then submit a VM to OpenNebula, by using onevm. We are going to build a VM template
to submit the image we had previously placed in the /opt/nebula/images directory.

CPU = 0.5

MEMORY = 128

OS = [

kernel = "/boot/vmlinuz-2.6.18-4-xen-amd64",

initrd = "/boot/initrd.img-2.6.18-4-xen-amd64",

root = "sda1"]

DISK = [

source = "/opt/nebula/images/disk.img",

target = "sda1",

readonly = "no"]

DISK = [

type = "swap",

size = 1024,

target = "sdb"]

NIC = [NETWORK = "Public VLAN"]

Once we have tailored the requirements to our needs (specially, CPU and MEMORY fields), ensuring
that the VM fits into at least one of both hosts, let’s submit the VM (assuming you are currently in your
home folder):

This should come back with an ID, that we can use to identify the VM for monitoring and con-
trolling, again through the use of the onevm command:

The STAT field tells the state of the virtual machine. If there is an runn state, the virtual machine
is up and running. Depending on how we set up the image, we may be aware of it’s IP address. If that
is the case we can try now and log into the VM.

To perform a migration, we use yet again the onevm command. Let’s move the VM (with VID=0)
to host02 (HID=1):

This will move the VM from host01 to host02. The onevm list shows something like the following:

©C12G Labs S.L. 6/56 Rev20100611

1.1.3 How the System Operates

OpenNebula does the following:

� Manages Virtual Networks. Virtual networks interconnect VMs. Each Virtual Networks in-
cludes a description.

� Creates VMs. The VM description is added to the database.

� Deploys VMs. According to the allocation policy, the scheduler decides where to execute the
VMs.

� Manages VM Images. Before execution, VM images are transferred to the host and swap disk
images are created. After execution, VM images may be copied back to the repository.

� Manages Running VMs. VM are started, periodically polled to get their consumption and state,
and can be shutdown, suspended, stopped or migrated.

The main functional components of an OpenNebula Private Cloud are the following:

� Hypervisor: Virtualization manager installed in the resources of the cluster that OpenNebula
leverages for the management of the VMs within each host.

� Virtual Infrastructure Manager: Centralized manager of VMs and resources, providing virtual
network management, VM life-cycle management, VM image management and fault tolerance.

� Scheduler: VM placement policies for balance of workload, server consolidation, placement con-
straints, affinity, advance reservation of capacity and SLA commitment.

1.2 Planning the Installation

1.2.1 Overview

OpenNebula assumes that your physical infrastructure adopts a classical cluster-like architecture with
a front-end, and a set of cluster nodes where Virtual Machines will be executed. There is at least one
physical network joining all the cluster nodes with the front-end.

Figure 1.3: high level architecture of cluster, its components and relationship

The basic components of an OpenNebula system are:

©C12G Labs S.L. 7/56 Rev20100611

� Front-end, executes the OpenNebula and cluster services.

� Nodes, hypervisor-enabled hosts that provides the resources needed by the Virtual Machines.

� Image repository, any storage medium that holds the base images of the VMs.

� OpenNebula daemon, is the core service of the system. It manages the life-cycle of the VMs and
orchestrates the cluster subsystems (network, storage and hypervisors)

� Drivers, programs used by the core to interface with an specific cluster subsystem, e.g. a given
hypervisor or storage file system.

� oneadmin, is the administrator of the private cloud that performs any operation on the VMs,
virtual networks, nodes or users.

� Users, use the OpenNebula facilities to create and manage their own virtual machines and virtual
networks.

1.2.2 System Requirements

Cluster Front-End

This section details the software that you need to install in the front-end to run and build OpenNebula.
The front-end will access the image repository that should be big enough to store the VM images for
your private cloud. Usually, these are master images that are cloned (copied) when you start the VM. So
you need to plan your storage requirements depending on the number of VMs you’ll run in your virtual
infrastructure (see the section below for more information). The base installation of OpenNebula only
takes 10MB.

Installation Mode OpenNebula can be installed in two modes:

� system-wide: binaries, log files and configuration files will be placed in standard UNIX location
under the root file-system. You will need root access to perform this installation.

� self-contained: the OpenNebula distribution is placed in a self-contained location. This is the
preferred installation mode.

In either case, you do not need the root account to run the OpenNebula services.

Software Packages This machine will act as the OpenNebula server and therefore needs to have
installed the following software:

� ruby >= 1.8.6 and < 1.9.0

� sqlite3 >= 3.5.2

� xmlrpc-c >= 1.06

� openssl >= 0.9

� ssh

Additionally, to build OpenNebula from source you neeed:

� Development versions of the sqlite3, xmlrpc-c and openssl packages, if your distribution does
not install them with the libraries.

� scons >= 0.97

� g++ >= 4

� flex >= 2.5 (optional, only needed to rebuild the parsers)

� bison >= 2.3 (optional, only needed to rebuild the parsers)

©C12G Labs S.L. 8/56 Rev20100611

Optional Packages These packages are not needed to run or build OpenNebula. They improve the
performance of the user-land libraries and tools of OpenNebula, nor the core system. You will probably
experiment a more responsive CLI

First install rubygems and ruby development libraries:

� ruby-dev

� rubygems

� rake

� make

Then install the following packages:

� ruby xmlparser, some distributions include a binary package for this (libxml-parser-ruby1.8). If
it is not avilable in your distribution install expat libraries with its development files and install
xmlparser using gem:

Note the extra parameters to gem install. Some versions of xmlparser have problems building the
documentation and we can use it without documentation installed.

Bear in mind that in some Linux flavors you will need to install the ”expat-devel” package to be
able to install the xmlparser.

� ruby nokogiri, to install this gem you will need libxml2 and libxslt libraries and their development
versions. The we can install nokogiri library:

Cluster Node

The nodes will run the VMs and does not need any additional storage requirement, see the storage section
for more details.

Software Packages

These are the requirements in the cluster nodes that will run the VM’s:

� ssh server running

� hypervisor working properly configured

� ruby >= 1.8.5

1.2.3 Preparing the Cluster

This section guides you through steps needed to prepare your cluster to run a private cloud.

Storage

In this guide we assume that the image repository and the OpenNebula var directory can be access in
the cluster nodes by a Shared FS of any kind. In this way you can take full advantage of the hypervisor
capabilities (i.e. live migration) and OpenNebula Storage module (i.e. no need to always clone images).

OpenNebula can work without a Shared FS, this will make you to always clone the images and
you will only be able to do cold migrations. However this non-shared configuration does not impose any
significant storage requirements. If you want to use this configuration check the Storage Customization guide
and skip this section.

The cluster front-end will export the image repository and the OpenNebula installation directory to
the cluster nodes. The size of the image repository depends on the number of images (and size) you want
to store. Also when you start a VM you will be usually cloning (copying) it, so you must be sure that
there is enough space to store all the running VM images.

Create the following hierarchy in the front-end root file system:

©C12G Labs S.L. 9/56 Rev20100611

Figure 1.4: Storage Model : NFS

� /srv/cloud/one, will hold the OpenNebula installation and the clones for the running VMs

� /srv/cloud/images, will hold the master images and the repository

Example: A 64 core cluster will typically run around 80VMs, each VM will require an average of
10GB of disk space. So you will need ˜800GB for /srv/cloud/one, you will also want to store 10-15
master images so ˜200GB for /srv/cloud/images. A 1TB /srv/cloud will be enough for this example
setup.

Export /srv/cloud to all the cluster nodes. For example, if you have all your physical nodes in a
local network with address 192.168.0.0/24 you will need to add to your a line like this:

In each cluster node create /srv/cloud and mount this directory from the front-end.

User Account

The Virtual Infrastructure is administered by the oneadmin account, this account will be used to run
the OpenNebula services and to do regular administration and maintenance tasks.

OpenNebula supports multiple users to create and manage virtual machines and networks. You
will create these users later when configuring OpenNebula.

Follow these steps:

� Create the cloud group where OpenNebula administrator user will be:

� Create the OpenNebula administrative account (oneadmin), we will use OpenNebula directory as
the home directory for this user:

� Get the user and group id of the OpenNebula administrative account. This id will be used later to
create users in the cluster nodes with the same id: In this case the user id will be 1001 and group
also 1001.

� Create the group account also on every node that run VMs. Make sure that its id is the same as in
the frontend. In this example 1001:

©C12G Labs S.L. 10/56 Rev20100611

You can use any other method to make a common cloud group and oneadmin account in the nodes,
for example NIS4.

Network

Figure 1.5:

There are no special requirements for networking, apart from those derived from the previous config-
uration steps. However to make an effective use of your VM deployments you’ll probably need to make
one or more physical networks accessible to them.

This is achieved with ethernet bridging, there are several guides that explain how to deal with this
configuration, check for example the networking howto in the XEN documentation.

For example, a typical cluster node with two physical networks one for public IP addresses (attached
to eth0 NIC) and the other for private virtual LANs (NIC eth1) should have two bridges:

Please for more details on using virtual networks check the Virtual Network Usage Guide and
the Networking Customization Guide

Secure Shell Access

You need to create ssh keys for oneadmin user and configure machines so it can connect to them using
ssh without need for a password.

� Generate oneadmin ssh keys: When prompted for password press enter so the private key is not
encripted.

� Copy public key to ~/.ssh/authorized_keys to let oneadmin user log without the need to type
password. Do that also for the frontend:

� Tell ssh client to not ask before adding hosts to known_hosts file. This goes into ~/.ssh/config:

Check that the sshd daemon is running in the cluster nodes. oneadmin must able to log in the cluster
nodes without being promt for a password. Also remove any Banner option from the sshd_config file
in the cluster nodes.

Hypervisor

The virtualization technology installed in your cluster nodes, have to be configured so the oneadmin user
can start, control and monitor VMs. This usually means the execution of commands with root privileges
or making oneadmin part of a given group. Please take a look to the virtualization guide that fits your
site:

� Xen Configuration Guide

� KVM Configuration Guide

� VMware Configuration Guide

4Network Information Service

©C12G Labs S.L. 11/56 Rev20100611

http://wiki.xensource.com/xenwiki/XenNetworking

1.2.4 Planning Checklist

If you have followed the previous steps your cluster should be ready to install and configure OpenNebula.
You may want to print the following checklist to check your plan and proceed with the installation and
configuration steps.

Software Requirements
ACTION DONE/COMMENTS

Installation type: self-contained, system-wide self-contained
Installation directory /srv/cloud/one

OpenNebula software downloaded to /srv/cloud/one/SRC

sqlite, g++, scons, ruby and software requirements installed
User Accounts

ACTION DONE/COMMENTS

oneadmin account and cloud group ready in the nodes and front-end
Storage Checklist

ACTION DONE/COMMENTS

/srv/cloud structure created in the front-end
/srv/cloud exported and accessible from the cluster nodes
mount point of /srv/cloud in the nodes if different VMDIR=<mount point>/var/

Cluster nodes Checklist
ACTION DONE/COMMENTS

hostnames of cluster nodes
ruby, sshd installed in the nodes
oneadmin can ssh the nodes paswordless

1.3 Platform Notes

1.3.1 Ubuntu/Kubuntu

Ubuntu comes with OpenNebula packages, for easy installation:

� libopennebula-dev - OpenNebula client library - Development

� libopennebula1 - OpenNebula client library - Runtime

� opennebula - OpenNebula controller

� opennebula-common - OpenNebula common files

� opennebula-node - OpenNebula node

If you want to build OpenNebula install the following packages:

� libsqlite3-dev

� libxmlrpc-c3-dev

� scons

� g++

� ruby

� libssl-dev

©C12G Labs S.L. 12/56 Rev20100611

https://help.ubuntu.com/community/OpenNebula

Optional software:

� ruby-dev

� make

� rake

� rubygems

� libxml-parser-ruby1.8

� libxslt1-dev

� libxml2-dev

� nokogiri (ruby gem)

1.3.2 Debian Lenny

To build OpenNebula install the following packages:

� gcc c++ compiler: g++

� ruby: ruby

� sqlite3: libsqlite3-0, sqlite3

� sqlite3-dev : libsqlite3-dev

� sqlite3-ruby: libsqlite3-ruby

� libxmlrpc-c: libxmlrpc-c3-dev, libxmlrpc-c3

� libssl: libssl-dev

� scons: scons

The xen packages on Lenny seems to be broken, and they don’t work with the tap:aio interface. Sander
Klous in the mailing proposes the following workaround:

ln -s /usr/lib/xen-3.2-1/bin/tapdisk /usr/sbin # echo xenblktap >> /etc/modules # reboot

1.3.3 Fedora 8

Not known issues.

1.3.4 Gentoo

When installing libxmlrpc you have to specify that it will be compiled with thread support:

USE="threads" emerge xmlrpc-c

1.3.5 Arch

The xmlrpc-c package available in the extra repository is not compiled with support for the abyss server.
Use the Arch Build System (ABS) to include support for the server. Just remove disable-abyss from
the configure command in the PKGBUILD file, and install the package:

cd $srcdir/$pkgname-$pkgver

./configure --prefix=/usr \

--enable-libxml2-backend \

--disable-cgi-server \

--disable-libwww-client \

--disable-wininet-client

©C12G Labs S.L. 13/56 Rev20100611

http://lists.alioth.debian.org/pipermail/pkg-xen-devel/2009-June/002344.html

1.3.6 CentOS 5 / RHEL 5

Ruby

We can install the standard packages directly with yum:
$ yum install ruby ruby-devel ruby-docs ruby-ri ruby-irb ruby-rdoc
To install rubygems we must activate the EPEL repository:
$ wget http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-3.noarch.rpm $ yum lo-

calinstall epel-release-5-3.noarch.rpm $ yum install rubygems
Once rubygems is installed we can install the following gems:
gem install nokogiri rake xmlparser

scons

The version that comes with Centos is not compatible with our build scripts. To install a more recent
version you can download the RPM at:

http://www.scons.org/download.php
$ wget http://prdownloads.sourceforge.net/scons/scons-1.2.0-1.noarch.rpm $ yum localinstall scons-

1.2.0-1.noarch.rpm

xmlrpc-c

You can download the xmlrpc-c and xmlrpc-c packages from the rpm repository at http://centos.karan.org/.
$ wget http://centos.karan.org/el5/extras/testing/i386/RPMS/xmlrpc-c-1.06.18-1.el5.kb.i386.rpm $

wget http://centos.karan.org/el5/extras/testing/i386/RPMS/xmlrpc-c-devel-1.06.18-1.el5.kb.i386.rpm $
yum localinstall xmlrpc-c-1.06.18-1.el5.kb.i386.rpm xmlrpc-c-devel-1.06.18-1.el5.kb.i386.rpm

sqlite

This package should be installed from source, you can download the tar.gz from http://www.sqlite.org/download.html.
It was tested with sqlite 3.5.9.

$ wget http://www.sqlite.org/sqlite-amalgamation-3.6.17.tar.gz $ tar xvzf sqlite-amalgamation-3.6.17.tar.gz
$ cd sqlite-3.6.17/ $./configure $ make $ make install

If you do not install it to a system wide location (/usr or /usr/local) you need to add LD LIBRARY PATH
and tell scons where to find the files:

$ scons sqlite=<path where you installed sqlite>

1.3.7 openSUSE 11

Building tools

By default openSUSE 11 does not include the standard building tools, so before any compilation is done
you should install:

$ zypper install gcc gcc-c++ make patch

Required Libraries

Install these packages to satisfy all the dependencies of OpenNebula:
$ zypper install libopenssl-devel libcurl-devel scons pkg-config sqlite3-devel libxslt-devel libxmlrpc server abyss++3

libxmlrpc client++3 libexpat-devel libxmlrpc server++3

Ruby

We can install the standard packages directly with zypper:
$ zypper install ruby ruby-doc-ri ruby-doc-html ruby-devel rubygems
rubygems must be >=1.3.1, so to play it safe you can update it to the latest version:
$ wget http://rubyforge.org/frs/download.php/45905/rubygems-1.3.1.tgz $ tar zxvf rubygems-1.3.1.tgz

$ cd rubygems-1.3.1 $ ruby setup.rb $ gem update –system
Once rubygems is installed we can install the following gems:

©C12G Labs S.L. 14/56 Rev20100611

https://fedoraproject.org/wiki/EPEL/FAQ#howtouse
http://www.scons.org/download.php
http://centos.karan.org/
http://www.sqlite.org/download.html

gem install nokogiri rake xmlparser

xmlrpc-c

xmlrpc-c must be built by downloading the latest svn release and compiling it. Read the README file
included with the package for additional information.

svn co http://xmlrpc-c.svn.sourceforge.net/svnroot/xmlrpc-c/super stable xmlrpc-c cd xmlrpc-c ./con-
figure make make install

1.3.8 MAC OSX 10.4 10.5

OpenNebula frontend can be installed in Mac OS5 X. Here are the instructions to build it in 10.5 (Leopard)
Requisites:

� xcode (you can install in from your Mac OS5 X DVD)

� macports http://www.macports.org/

Getopt

This package is needed as getopt that comes with is BSD style.
$ sudo port install getopt

xmlrpc

$ sudo port install xmlrpc-c

scons

You can install scons using macports as this:
$ sudo port install scons
Unfortunately it will also compile python an lost of other packages. Another way of getting it is down-

loading the standalone package in http://www.scons.org/download.php. Look for scons-local Packages
and download the Gzip tar file. In this example I am using version 1.2.0 of the package.

$ mkdir -p ˜/tmp/scons $ cd ˜/tmp/scons $ tar xvf ˜/Downloads/scons-local-1.2.0.tar $ alias scons=’python
˜/tmp/scons/scons.py’

OpenNebula

$ scons -j2

1.4 Installing the Software

Do not forget to check the Platform Notes for a list of specific software requirements to build Open-
Nebula.

Follow these simple steps to install the OpenNebula software:

� Download and untar the OpenNebula tarball.

� Change to the created folder and run scons to compile OpenNebula the argument expression [OP-
TIONAL] is used to set non-default paths for :

OPTION VALUE
sqlite path-to-sqlite-install
xmlrpc path-to-xmlrpc-install
parsers yes if you want to rebuild flex/bison files

5Operating System

©C12G Labs S.L. 15/56 Rev20100611

http://www.macports.org/
http://www.scons.org/download.php

� OpenNebula can be installed in two modes: system-wide, or in self-contained directory. In
either case, you do not need to run OpenNebula as root. These options can be specified when
running the install script: where <install options> can be one or more of:

OPTION VALUE

-u user that will run OpenNebula, defaults to user executing install.sh
-g group of the user that will run OpenNebula, defaults to user executing install.sh
-k keep current configuration files, useful when upgrading
-d target installation directory. If defined, it will specified the path for the self-contained

install. If not defined, the installation will be performed system wide
-r remove Opennebula, only useful if -d was not specified, otherwise rm -rf

$ONE_LOCATION would do the job
-h prints installer help

We will do a self-contained installation. As oneadmin user:
Now you need to configure OpenNebula to adjust it to your particular cluster.

1.4.1 Verifying the Installation

Depending on the installation mode (defined by the presence or absence of the -d option in the installation
script), there are two possibilities with respect to the layout of the OpenNebula files.

Self contained

Once the OpenNebula software is installed specifying a directory with the -d option, the next tree should
be found under $ONE_LOCATION:

Figure 1.6:

System wide

Once the OpenNebula software is installed without specifying a directory with the -d option, the next
tree reflects the files installed:

1.5 Configuring OpenNebula

1.5.1 OpenNebula Components

OpenNebula comprises the execution of three type of processes:

� The OpenNebula daemon (oned), to orchestrate the operation of all the modules and control the
VM’s life-cycle

� The drivers to access specific cluster systems (e.g. storage or hypervisors)

� The scheduler to take VM placement decisions

©C12G Labs S.L. 16/56 Rev20100611

Figure 1.7:

Figure 1.8: high level architecture of cluster, its components and relationship

In this section you’ll learn how to configure and start these services.

OpenNebula Daemon

The configuration file for the daemon is called oned.conf and it is placed inside the $ONE_LOCATION/etc
directory (or in /etc/one if OpenNebula was installed system wide).

A detailed description of all the configuration options for the OpenNebula daemon can be found
in the oned.conf reference document

The oned.conf file consists in the following sections:

� General configuration attributes, like the time between cluster nodes and VM monitorization actions
or the MAC prefix to be used. See more details\ldots

� Information Drivers, the specific adaptors that will be used to monitor cluster nodes. See more details\ldots

� Virtualization Drivers, the adaptors that will be used to interface the hypervisors. See more details\ldots

� Transfer Drivers, that are used to interface with the storage system to clone, delete or move VM
images. See more details\ldots

� Hooks, that are executed on specific events, e.g. VM creation. See more details\ldots

The following example will configure OpenNebula to work with KVM and a shared FS:

Attributes

HOST_MONITORING_INTERVAL = 60

VM_POLLING_INTERVAL = 60

VM_DIR = /srv/cloud/one/var #Path in the cluster nodes to store VM images

NETWORK_SIZE = 254 #default

MAC_PREFIX = "00:03"

©C12G Labs S.L. 17/56 Rev20100611

#Drivers

IM_MAD = [name="im_kvm", executable="one_im_ssh", arguments="im_kvm/im_kvm.conf"]

VM_MAD = [name="vmm_kvm",executable="one_vmm_kvm",

default="vmm_kvm/vmm_kvm.conf", type= "kvm"]

TM_MAD = [name="tm_nfs", executable="one_tm", arguments="tm_nfs/tm_nfs.conf"]

Be sure that VM_DIR is set to the path where the front-end’s $ONE LOCATION/var directory is
mounted in the cluster nodes.

Scheduler

The Scheduler module is in charge of the assignment between pending Virtual Machines and cluster nodes.
OpenNebula’s architecture defines this module as a separate process that can be started independently
of oned. OpenNebula comes with a match making scheduler (mm sched) that implements the Rank
Scheduling Policy.

The goal of this policy is to prioritize those resources more suitable for the VM. You can configure
several resource and load aware policies by simply specifying specific RANK expressions in the Virtual
Machine definition files. Check the scheduling guide to learn how to configure these policies.

You can use OpenNebula without the scheduling process to operate it in a VM management mode.
Start or migration of VMs in this case is explicitly performed using the onevm command.

The Haizea lease manager can also be used as a scheduling module in OpenNebula. Haizea allows
OpenNebula to support advance reservation of resources and queuing of best effort requests.

Drivers

Drivers are separate processes that communicate with the OpenNebula core using an internal ASCII6

protocol. Before loading a driver, two run commands (RC) files are sourced to optionally obtain environ-
mental variables.

These two RC files are:

� $ONE_LOCATION/etc/mad/defaultrc. Global environment and tasks for all the drivers. Variables
are defined using sh syntax, and upon read, exported to the driver’s environment:

Debug for MADs [0=ERROR, 1=DEBUG]

If set, MADs will generate cores and logs in $ONE_LOCATION/var.

ONE_MAD_DEBUG=

Nice Priority to run the drivers

PRIORITY=19

� Specific file for each driver, that may re-defined the defaultrc variables. Please see each driver’s
configuration guide for specific options:

– Information Guide for the monitor drivers

– Storage Guide for the transfer drivers

– the Virtualization Adaptors of the Documentation for the different virtualization drivers

1.5.2 Start & Stop OpenNebula

When you execute OpenNebula for the first time it will create an administration account. Be sure to
put the user and password in a single line as user:password in the $ONE_AUTH file.

The OpenNebula daemon and the scheduler can be easily started with the $ONE_LOCATION/bin/one

script. Just execute as the <oneadmin> user:
If you do not want to start the scheduler just use oned, check oned -h for options.
Now we should have running two process:

6American Standard Code for Information Interchange

©C12G Labs S.L. 18/56 Rev20100611

http://haizea.cs.uchicago.edu

� oned : Core process, attends the CLI requests, manages the pools and all the components

� mm_sched : Scheduler process, in charge of the VM to cluster node matching

If those process are running, you should see content in their log files (log files are placed in /var/log/one/

if you installed OpenNebula system wide):

� $ONE_LOCATION/var/oned.log

� $ONE_LOCATION/var/sched.log

1.5.3 OpenNebula Users

There are two account types in the OpenNebula system:

� The oneadmin account is created the first time OpenNebula is started using the ONE AUTH
data, see below. oneadmin has enough privileges to perform any operation on any object (virtual
machine, network, host or user)

� Regular user accounts must be created by <oneadmin> and they can only manage their own
objects (virtual machines and networks)

Virtual Networks created by oneadmin are public and can be used by every other user.
OpenNebula users should have the following environment variables set:

ONE AUTH Needs to point to a file containing
just a single line stating ”user-
name:password”. If ONE AUTH is not
defined, $HOME/.one/one auth will be used
instead. If no auth file is present, OpenNebula
cannot work properly, as this is needed by the
core, the CLI, and the cloud components as well.

ONE LOCATION If OpenNebula was installed in self-
contained mode, this variable must be set
to <destination folder>. Otherwise, in system
wide mode, this variable must be unset. More
info on installation modes can be found here

ONE XMLRPC http://localhost:2633/RPC2
PATH $ONE_LOCATION/bin:$PATH if self-contained.

Otherwise this is not needed.

Adding and Deleting Users

User accounts within the OpenNebula system are managed by <oneadmin> with the oneuser utility.
Users can be easily added to the system like this:

In this case user helen should include the following content in the $ONE AUTH file:
Users can be deleted by simply:
To list the users in the system just issue the command:

Detailed information of the oneuser utility can be found in the Command Line Reference

1.5.4 OpenNebula Hosts

Finally to set up the cluster, the nodes have to be added to the system as OpenNebula hosts. You need
the following information:

� Hostname of the cluster node or IP

� Information Driver to be used to monitor the host, e.g. im_kvm.

©C12G Labs S.L. 19/56 Rev20100611

http://localhost:2633/RPC2

� Storage Driver to clone, delete, move or copy images into the host, e.g. tm_nfs.

� Virtualization Driver to boot, stop, resume or migrate VMs in the host, e.g. vmm_kvm.

Before adding a host check that you can ssh to it without being prompt for a password

Adding and Deleting Hosts

Hosts can be added to the system anytime with the onehost utility. You can add the cluster nodes to
be used by OpenNebula, like this:

The status of the cluster can be check with the list command:
And specific information about a host with show:
If you want not to use a given host you can temporarily disable it:
A disable host should be listed with STAT off by onehost list. You can also remove a host perma-

nently with:
Detailed information of the onehost utility can be found in the Command Line Reference

1.5.5 Logging and Debugging

There are different log files corresponding to different OpenNebula components:

� ONE Daemon: The core component of OpenNebula dumps all its logging information onto
$ONE_LOCATION/var/oned.log. Its verbosity is regulated by DEBUG LEVEL in $ONE_LOCATION/etc/oned.conf.

� Scheduler: All the scheduler information is collected into the $ONE LOCATION/var/sched.log
file.

� Virtual Machines: All VMs controlled by OpenNebula have their folder, $ONE_LOCATION/var/<VID>/

(or /var/lib/one/<VID> in a system wide installation). You can find the following information
in it:

– Log file : The information specific of the VM will be dumped in a file in this directory called
vm.log. Note: These files are in /var/log/one if OpenNebula was installed system wide.

– Deployment description files : Stored in deployment.<EXECUTION>, where <EXECUTION>

is the sequence number in the execution history of the VM (deployment.0 for the first host,
deployment.1 for the second and so on).

– Transfer description files : Stored in transfer.<EXECUTION>.<OPERATION>, where <EXECUTION>

is the sequence number in the execution history of the VM, <OPERATION> is the stage where
the script was used, e.g. transfer.0.prolog, transfer.0.epilog, or transfer.1.cleanup.

– Save images: Stored in images/ sub-directory, images are in the form disk.<id>.

– Restore files : check-pointing information is also stored in this directory to restore the VM
in case of failure. The state information is stored in a file called checkpoint.

� Drivers: Each driver can have activated its ONE MAD DEBUG variable in their RC files
(see the Drivers configuration section for more details). If so, error information will be dumped to
$ONE_LOCATION/var/name-of-the-driver-executable.log; log information of the drivers is in
oned.log.

©C12G Labs S.L. 20/56 Rev20100611

Chapter 2

Configuring the Virtualization
Adaptors

2.1 Xen Adaptor

The XEN hypervisor offers a powerful, efficient and secure feature set for virtualization of x86, IA64,
PowerPC and other CPU architectures. It delivers both paravirtualization and full virtualization. This
guide describes the use of Xen with OpenNebula, please refer to the Xen specific documentation for
further information on the setup of the Xen hypervisor itself.

2.1.1 Xen Configuration

The cluster nodes must have a working installation of Xen that includes a Xen aware kernel running in
Dom0 and the Xen utilities. In each cluster node you must perform the following steps to get the driver
running:

� The remote hosts must have the xend daemon running (/etc/init.d/xend) and a XEN aware kernel
running in Dom0

� The <oneadmin> user may need to execute Xen commands using root privileges. This can be done
by adding this two lines to the sudoers file of the cluster nodes so <oneadmin> user can execute
Xen commands as root (change paths to suit your installation):

%xen ALL=(ALL) NOPASSWD: /usr/sbin/xm *

%xen ALL=(ALL) NOPASSWD: /usr/sbin/xentop *

� You may also want to configure network for the virtual machines. OpenNebula assumes that the
VMs have network access through standard bridging, please refer to the Xen documentation to
configure the network for your site.

� Some distributions have requiretty option enabled in the sudoers file. It must be disabled to so
ONE can execute commands using sudo. The line to comment out is this one:

Defaults requiretty

2.1.2 Driver Files

The driver consists of the following files:

� $ONE_LOCATION/lib/mads/one_vmm_xen : Shell script wrapper to the driver itself. Sets the envi-
ronment and other bootstrap tasks.

©C12G Labs S.L. 21/56 Rev20100611

http://www.xen.org
http://wiki.xensource.com/xenwiki/XenNetworking

� $ONE_LOCATION/lib/mads/one_vmm_xen.rb : The actual XEN driver.

� $ONE_LOCATION/etc/vmm_xen/vmm_xenrc : environment setup and bootstrap instructions

� $ONE_LOCATION/etc/vmm_xen/vmm_xen.conf : set here default values for XEN domain definitions.

Note: If OpenNebula was installed in system wide mode these directories become /usr/lib/one/-
mads and /etc/one/, respectively. The rest of this guide refers to the $ONE LOCATION paths (corre-
sponding to self contained mode) and omits the equivalent system wide locations. More information
on installation modes can be found here

2.1.3 Configuration

OpenNebula Configuration

OpenNebula needs to know if it is going to use the XEN Driver. To achieve this, two lines have to be
placed within $ONE_LOCATION/etc/oned.conf, one for the VM driver and other for the IM driver:

IM_MAD = [

name = "im_xen",

executable = "one_im_ssh",

arguments = "im_xen/im_xen.conf",

default = "im_xen/im_xen.conf"]

VM_MAD = [

name = "vmm_xen",

executable = "one_vmm_xen",

default = "vmm_xen/vmm_xen.conf",

type = "xen"]

� The name of the driver needs to be provided at the time of adding a new cluster node to Open-
Nebula.

� executable points to the path of the driver executable file. It can be an absolute path or relative
to $ONE_LOCATION/lib/mads.

� The default points to the configuration file for the driver (see below). It can be an absolute path
or relative to $ONE_LOCATION/etc.

� type identifies this driver as a XEN driver.

Driver Configuration

The driver uses two configuration files, by default placed in $ONE_LOCATION/etc/vmm_xen:

� Defaults file, specified in the default attribute in the driver specification line in oned.conf, usu-
ally$ONE_LOCATION/etc/vmm_xen/vmm_xen.conf. This file is home for default values for domain
definitions (in other words, OpenNebula templates). Let’s go for a more concrete and VM related
example. If the user wants to set a default value for CPU requirements for all of their XEN domain
definitions, simply edit the vmm_xenrc file and set a

CPU=0.6

into it. Now, when defining a ONE template to be sent to a XEN resource, the user has the choice of
”forgetting” to set the CPU requirement, in which case it will default to 0.6.

It is generally a good idea to place defaults for the XEN-specific attributes, that is, attributes manda-
tory in the XEN driver that are not mandatory for other hypervisors. Non mandatory attributes for XEN
but specific to them are also recommended to have a default.

©C12G Labs S.L. 22/56 Rev20100611

� Run commands file, the $ONE_LOCATION/etc/vmm_xen/vmm_xenrc file contains environment vari-
ables for the driver. You may need to tune the values for XENTOP_PATH and XM_PATH, if any of either
/usr/sbin/xentop and /usr/sbin/xm do not live in their default locations in the remote hosts.
This file can also hold instructions to be executed before the actual driver load to perform specific
tasks or to pass environmental variables to the driver. The syntax used for the former is plain shell
script that will be evaluated before the driver execution. For the latter, the syntax is the familiar:

ENVIRONMENT_VARIABLE=VALUE

2.1.4 Xen Specific Template Attributes

The following are template attributes specific to Xen, please refer to the OpenNebula user guide for a
complete list of the attributes supported to define a VM.

Optional Attributes

� CREDIT : Xen comes with a credit scheduler. The credit scheduler is a proportional fair share
CPU scheduler built from the ground up to be work conserving on SMP hosts. This attribute sets
a 16 bit value that will represent the amount of sharing this VM will have respect to the others
living in the same host. This value is set into the driver configuration file, is not intended to be
defined per domain.

Additional Tunning

The raw attribute offers the end user the possibility of passing by attributes not known by OpenNebula
to Xen. Basically, everything placed here will be written ad literally into the Xen deployment file.

RAW = [type="xen", data="on_crash=destroy"]

2.1.5 Testing

In order to test the Xen driver, the following template can be instantiated with appropriate values and
sent to a Xen resource:

CPU = 1

MEMORY = 128

OS = [kernel="/path-to-kernel",initrd= "/path-to-initrd",root="sda1"]

DISK = [source="/path-to-image-file",target="sda",readonly="no"]

NIC = [mac="xx.xx.xx.xx.xx.xx", bridg="eth0"]

GRAPHICS = [type="vnc",listen="127.0.0.1",port="5900"]

2.2 KVM Adaptor

KVM (Kernel-based Virtual Machine) is a complete virtualization technique for Linux. It offers full
virtualization, where each Virtual Machine interacts with its own virtualized hardware. This guide
describes the use of the KVM virtualizer with OpenNebula, please refer to KVM specific documentation
for further information on the setup of the KVM hypervisor itself.

2.2.1 KVM Configuration

The cluster nodes must have a working installation of KVM, that usually requires:

� CPU with VT extensions

� libvirt >= 0.4.0

� kvm kernel modules (kvm.ko, kvm-intel,amd.ko). Available from kernel 2.6.20 onwards.

©C12G Labs S.L. 23/56 Rev20100611

http://kvm.qumranet.com/kvmwiki

� the qemu user-land tools

OpenNebula uses the libvirt interface to interact with KVM, so the following steps are required in the
cluster nodes to get the KVM driver running:

� The remote hosts must have the libvirt daemon running.

� The user with access to these remotes hosts on behalf of OpenNebula (typically <oneadmin>) has
to pertain to the <libvirtd> and <kvm> groups in order to use the deaemon and be able to launch
VMs.

Migration

OpenNebula uses libvirt’s migration capabilities. More precisely, it uses the TCP protocol offered by
libvirt. In order to configure the physical nodes, the following files have to be modified:

� /etc/libvirt/libvirtd.conf : Uncomment ”listen tcp = 1”. Security configuration is left to the
admin’s choice, file is full of useful comments to achieve a correct configuration.

� /etc/default/libvirt-bin : add -l option to libvirtd_opts

2.2.2 Driver Files

The driver consists of the following files:

� $ONE_LOCATION/lib/mads/one_vmm_kvm : Shell script wrapper to the driver itself. Sets the envi-
ronment and other bootstrap tasks.

� $ONE_LOCATION/lib/mads/one_vmm_kvm.rb : The actual KVM driver.

� $ONE_LOCATION/etc/vmm_kvm/vmm_kvmrc : environment setup and bootstrap instructions

� $ONE_LOCATION/etc/vmm_kvm/vmm_kvm.conf : set here default values for KVM domain definitions.

Note: If OpenNebula was installed in system wide mode these directories become /usr/lib/one/-
mads and /etc/one/, respectively. The rest of this guide refers to the $ONE_LOCATION paths (correspond-
ing to self contained mode) and omits the equivalent system wide locations. More information on
installation modes can be found here.

2.2.3 Configuration

OpenNebula Configuration

OpenNebula needs to know if it is going to use the KVM Driver. To achieve this, two lines have to be
placed within $ONE_LOCATION/etc/oned.conf, one for the VM driver and other for the information (IM)
driver:

IM_MAD = [

name = "im_kvm",

executable = "one_im_ssh",

arguments = "im_kvm/im_kvm.conf",

default = "im_kvm/im_kvm.conf"]

VM_MAD = [

name = "vmm_kvm",

executable = "one_vmm_kvm",

default = "vmm_kvm/vmm_kvm.conf",

type = "kvm"]

� The name of the driver needs to be provided at the time of adding a new host to OpenNebula.

©C12G Labs S.L. 24/56 Rev20100611

� executable points to the path of the driver executable file. It can be an absolute path or relative
to $ONE_LOCATION/lib/mads.

� The default points to the configuration file for the driver (see below). It can be an absolute path
or relative to $ONE_LOCATION/etc.

� type identifies this driver as a KVM driver.

Driver Configuration

The driver uses two configuration files, by default placed in $ONE_LOCATION/etc/vmm_kvm:

� Defaults file, specified in the default attribute in the driver specification line in oned.conf, usu-
ally $ONE_LOCATION/etc/vmm_kvm/vmm_kvm.conf. This file is home for default values for domain
definitions (in other words, for OpenNebula templates). For example, if the user wants to set
a default value for CPU requirements for all of their KVM domain definitions, simply edit the
$ONE_LOCATION/etc/vmm_kvm/vmm_kvm.conf file and set a

CPU=0.6

into it. Now, when defining a VM to be sent to a KVM resource, the user has the choice of ”forgetting”
to set the CPU requirement, in which case it will default to 0.6.

It is generally a good idea to place defaults for the KVM-specific attributes, that is, attributes manda-
tory in the KVM driver that are not mandatory for other hypervisors. Non mandatory attributes for
KVM but specific to them are also recommended to have a default.

� Run Commands file, the $ONE_LOCATION/etc/vmm_kvm/vmm_kvmrc file holds instructions to be
executed before the actual driver load to perform specific tasks or to pass environmental variables
to the driver. The syntax used for the former is plain shell script that will be evaluated before the
driver execution. For the latter, the syntax is the familiar:

ENVIRONMENT_VARIABLE=VALUE

2.2.4 KVM Specific Template Attributes

The following are template attributes specific to KVM, please refer to the OpenNebula user guide for a
complete list of the attributes supported to define a VM.

Mandatory Attributes

Specify the boot device to consider in the OS1 attribute, using BOOT. Valid values for BOOT are fd,
hd, cdrom or network, that corresponds to the boot [a|c|d|n] option of the kvm command, respectively.
For example:

OS=[

KERNEL = /vmlinuz,

BOOT = hd]

Optional Attributes

In general you will not need to set the following attributes for you VMs, they are provided to let you fine
tune the VM deployment with KVM.

1Operating System

©C12G Labs S.L. 25/56 Rev20100611

DISK

� type, This attribute defines the type of the media to be exposed to the VM, possible values are:
disk (default), cdrom or floppy. This attribute corresponds to the media option of the -driver

argument of the kvm command.

� bus, specifies the type of disk device to emulate; possible values are driver specific, with typical
values being ide, scsi or pflash. This attribute corresponds to the if option of the -driver

argument of the kvm command.

NIC

� target, name for the tun device created for the VM. It corresponds to the ifname option of the
’-net’ argument of the kvm command.

� script, name of a shell script to be executed after creating the tun device for the VM. It corresponds
to the script option of the ’-net’ argument of the kvm command.

� model, ethernet hardware to emulate. You can get the list of available models with this command:

$ kvm -net nic,model=? -nographic /dev/null

Virtio Virtio is the framework for IO virtualization in KVM. You will need a linux kernel with the
virtio drivers for the guest, check check the KVM documentation for more info.

If you want to use the virtio drivers add the following attributes to your devices:

� DISK, add the attribute bus=virtio

� NIC, add the attribute model=virtio

FEATURES

� pae: Physical address extension mode allows 32-bit guests to address more than 4 GB2 of memory:

� acpi: useful for power management, for example, with KVM guests it is required for graceful
shutdown to work.

Format and valid values:

FEATURES=[

pae={yes|no},

acpi={yes|no}]

Default values for this features can be set in the driver configuration file so they don’t need to be specified
for every VM.

Additional Tunning

The raw attribute offers the end user the possibility of passing by attributes not known by OpenNebula
to KVM. Basically, everything placed here will be written literally into the KVM deployment file (use
libvirt xml format and semantics).

RAW = [type = "kvm",

data = "<devices><serial type=\"pty\"><source path=\"/dev/pts/5\"/><target

port=\"0\"/></serial><console type=\"pty\" tty=\"/dev/pts/5\"><source path=\"/dev/pts/5\"/><target

port=\"0\"/></console></devices>"]

2Gigabyte

©C12G Labs S.L. 26/56 Rev20100611

http://www.linux-kvm.org/page/Virtio

2.2.5 Testing

In order to test the KVM driver, the following template can be instantiated with appropriate values and
sent to a KVM resource:

NAME = KVM-TEST

CPU = 1

MEMORY = 128

OS = [kernel="/path-to-kernel",initrd="/path-to-initrd",boot=hd]

DISK = [source="/path-to-image-file",clone=yes,target=hda,readonly=no]

NIC = [mac="xx.xx.xx.xx.xx.xx"]

2.3 VMware Adaptor

The VMware Infrastructure API3 (VI API3) provides a complete set of language-neutral interfaces to
the VMware virtual infrastructure management framework. By targeting the VI API3, the OpenNebula
VMware drivers are able to manage various flavors of VMware hypervisors: ESXi (free), ESX and VMware
Server.

2.3.1 VMware Configuration

Requirements

The front-end where OpenNebula is installed needs the following software:

� VMware VI SDK 2.5

� Apache Axis 1.4

Besides, a VMware hypervisor is needed in the cluster nodes. You can choose and install one of the
following hypervisors:

� ESXi (free)

� ESX

� VMware Server

User Configuration

All the VMware hypervisors (that will be accessed by the same set of drivers) needs to share the same user
with the same password. This user can be created through the VMware Infrastructure Client (VIC), in
the User & Groups. This user needs to have the same UID as the oneadmin user has in the OpenNebula
front-end, and this can be set through the VIC as well.

The VIC that can be downloaded via https://$<$esx-hostname$>$:443/. Please be aware that
you will need a Windows machine in order to run it.

Datastore Configuration

The default recommended configuration of the storage for VMware hypervisors is to use a shared filesystem
between them, ideally NFS. This share has to be accessible to the OpenNebula front-end. Its name is
identified by $DATASTORE (all the hypervisors have to mount the share with the same name), and its
location in the OpenNebula front-end by the environmental variable $DATASTORE PATH.

This configuration can be set through the VIC as well, Configuration tab, Storage link in the left
panel, ”Add Storage” in the top right. You will need a NFS export with the ”no root squash” option
enabled (the VIC needs root permission to create and manage VMs).

3Application Programming Interface

©C12G Labs S.L. 27/56 Rev20100611

http://www.vmware.com/support/developer/vc-sdk/
http://ws.apache.org/axis/
http://www.vmware.com/products/esxi/
http://www.vmware.com/products/vi/esx/
http://www.vmware.com/products/server/
https://<esx-hostname>:443/

2.3.2 Front-end Configuration

With respect to the front-end, the following steps need to be taken in order to configure properly the
drivers:

� The VMWare VI SDK4 following the Setup Guide. You should end up with a keystore contain-
ing VMWare certificates installed in the <oneadmin> home folder. Briefly you need to copy the
/etc/vmware/ssl/rui.crt of all the hypervisors and add them to the OpenNebula front-end java
keystore with a command like:

� Add all jars in $AXISHOME/lib and $SDKHOME/samples/Axis/java/lib/ to <oneadmin> CLASS-
PATH

2.3.3 Driver Installation

� Go to OpenNebula source code directory and navigate to src/vmm mad/vmware. Run the install-
vmware.sh script.

2.3.4 Driver Files

The drivers consists of the following files:

Virtual Machine Manager (VMM)

� $ONE_LOCATION/lib/mads/*.class : Driver libraries

� $ONE_LOCATION/bin/one_vmm_vmware : Wrapper for VMware Virtual Machine Manager driver

� $ONE_LOCATION/etc/vmm_vmware/vmm_vmwarerc : environment setup. Also useful for setting
whether the driver should be verbose in the log entries.

Information Manager (IM)

� $ONE_LOCATION/lib/mads/*.class : Driver libraries

� $ONE_LOCATION/bin/one_im_vmware : Wrapper for VMware Information Manager driver

� $ONE_LOCATION/etc/im_vmware/im_vmwarerc : environment setup. Also useful for setting whether
if the driver should be verbose in the log entries.

2.3.5 Configuration

OpenNebula Configuration

OpenNebula needs to be told how to run the drivers. The place to do so is the $ONE_LOCATION/etc/oned.conf,
it needs to have the VMware transfer, information and virtualization drivers set like the following lines:

#---

VMWare Information Driver Manager sample configuration

#---

IM_MAD = [

name = "im_vmware",

executable = "one_im_vmware",

arguments = "--username <esxi_username> --password <esxi_password>"]

#---

4Software Development Kit

©C12G Labs S.L. 28/56 Rev20100611

http://www.vmware.com/support/developer/vc-sdk/visdk25pubs/visdk25setupguide.pdf

#---

VMWare Virtualization Driver Manager sample configuration

#---

VM_MAD = [

name = "vmm_vmware",

executable = "one_vmm_vmware",

arguments = "--username <esxi_username> --password <esxi_password>",

type = "xml"]

#---

#---

VMWare Transfer Driver Manager sample configuration

#---

TM_MAD = [

name = "tm_vmware",

executable = "one_tm",

arguments = "tm_vmware/tm_vmware.conf"]

#---

Driver Configuration

Drivers rely on environmental variables to gather necessary information to access and manage the VMware
hypervisors. This can be set in the shell session scope (i.e. in the .bashrc of oneadmin) or in the rc files
of each driver. The needed variables are:

� VMWARE_TRUSTORE : Must point to the vmware.keystore file. (Needed by the information and virtu-
alization drivers)

� VMWARE_DATASTORE: Name of the datastore shared by all the hypervisors. (Needed by the virtual-
ization driver)

� VMWARE_DATACENTER: Name of the datacenter. This name has to be shared between all the hyper-
visor. By defaut it is ha-datacenter. (Needed by the virtualization driver)

� DATASTORE_PATH: Path to the exported NFS share that the hypervisors mount as their dastore. This
is the local path in the OpenNebula front-end. (Needed by the transfer driver).

A sample rc configuration file for the virtualization driver ($ONE_LOCATION/etc/vmm_vmware/vmm_vmwarerc)
follows:

This must point to a java keystore with appropriate certificates for accessing

all the ESXi hosts

VMWARE_TRUSTORE=~/.vmware-certs/vmware.keystore

Uncomment the following line to active MAD debug

ONE_MAD_DEBUG=1

Datastore name

VMWARE_DATASTORE=datastore1

Datacenter name

VMWARE_DATACENTER=ha-datacenter

Also, a Virtual Machine port group defined within a Virtual Switch attached to a physical device needs
to be configured using the VIC (Configuration tab, Networking link in the left panel, Add Networking

in the top right). Its name has to match the BRIDGE name of the OpenNebula Virtual Network defined
to provide configuration to the VMs. More information about Virtual Networks in OpenNebula here

©C12G Labs S.L. 29/56 Rev20100611

2.3.6 VMware Template Attributes

Relevant attributes in the Virtual Machine template for VMware are:

� Name: Name of the Virtual Machine.

� Memory: Expressed in Mb.

� CPU: Number of virtual CPUs that this VM will have assigned.

� NIC: Which Virtual Network to connect to, or direct set of the MAC address. All VM Virtual
Ethernet Cards (defined when the VM was created using the VIC) will be erased, and one or more
Virtual Ethernet Cards will be added (one per NIC section). If no NIC section is present, previously
defined Virtual Ethernet Cards won’t be erased.

� DISKS: Only one disk is needed (and compulsory). Its source MUST point to the folder containing
the VM in the datastore. It has to be a local path in the OpenNebula front-end. Additionally, the
CLONE and SAVE flags will have effect on the whole of the Virtual Machine.

Example:

NAME=VMwareVM

MEMORY=256

CPU=1

NIC=[NETWORK="VMWareNet"]

DISK=[source="/images/vmware/myVM",

clone="yes",

save="no"]

2.3.7 Using the VMware Driver

In order to use a Virtual Machine with VMware hypervisors within OpenNebula it first needs to be
created with the VIC in the shared datastore. To avoid security risks and enable Cloning and Saving
capabilities, we recommend changing ownership of every file in the VM folder to the <oneadmin> user:

To avoid questions asked by the VMware hypervisors about the VM’s uuid when they are moved
around, the vmx file can be edited and the following added to it:

Also, to allow for any MAC address to be set for the VMs, the vmx has to include:
Alternatively to the consolidated shared filesystem approach, VMs can be stagged to VMware

hypervisors using ssh. See here for details on the Vmware ssh transfer driver.

©C12G Labs S.L. 30/56 Rev20100611

http://dev.opennebula.org/projects/vmware-ssh/wiki

Chapter 3

Customizing your Private Cloud

3.1 Storage and Image Management

One key aspect of virtualization management is the process of dealing with Virtual Machines images.
Allegedly, there are a number of possibly different configurations depending on the user needs. For
example, the user may want all her images placed on a separate repository with only http access. Or
images can be shared through NFS between all the hosts. OpenNebula aims to be flexible enough to
support as many different image storage configurations as possible.

The image storage model upon which OpenNebula can organize the images uses the following concepts:

� Image Repositories, refer to any storage medium, local or remote, that hold the base images of
the VMs. An image repository can be a dedicated file server or a remote URL1 from an appliance
provider, but they need to be accessible from the OpenNebula front-end.

� Virtual Machine Directory, is a directory on the cluster node where a VM is running and is
of the form <VM_DIR>/<VID>, <VM_DIR> path is defined in the oned.conf file for the cluster.
Deployment files for the hypervisor to boot the machine, checkpoints and images being used or
saved, all of them specific to that VM will be placed into this directory. Note that the <VM_DIR>

should be shared for most hypervisors to be able to perform live migrations.

3.1.1 The Image Life-Cycle

Any given VM image to be used crosses through the next steps:

� Preparation, implies all the necessary changes to be made to the machine’s image so it is prepared
to offer the service it is intended to. OpenNebula assumes that the image(s) that conform a
particular VM are prepared and placed in the accessible image repository.

� Cloning the image means taking the image from the repository and placing it in the VM’s directory
before the VM is actually booted. If a VM image is to be cloned, means that the original image
is not going to be used, and thus a copy will. There is a qualifier (clone) for the images that can
mark them as to be cloned or not.

� Save / Remove, once the VM has been shutdown the images, and all the changes thereof, are
to be disposed of. However, if the save qualifier is activated the image will be saved for later use
under $ONE_LOCATION/var/<VID>/images.

Note: If OpenNebula was installed in system wide mode this directory becomes /var/lib/one/im-
ages. The rest of this guide refers to the $ONE_LOCATION paths (corresponding to self contained mode)
and omits the equivalent system wide locations. More information on installation modes can be found
here

1Uniform Resource Locator

©C12G Labs S.L. 31/56 Rev20100611

3.1.2 Physical Cluster Configuration

The storage model assumed by OpenNebula does not require any special software to be installed. The
following are two cluster configuration examples supported by OpenNebula out-of-the-box. They repre-
sent the choices of either sharing the <VM_DIR> among all the cluster nodes and the cluster front-end via
NFS, or not sharing any folder and have the machines accessible using SSH2. Please note that the Transfer
Manager was built using a modular architecture, where each action is associated with a small script that
can be easily tuned to fit your cluster configuration. A third choice (share the image repository and not
the <VM_DIR>) is explained in the Customizing \& Extending section.

Shared - NFS

This arrangement of the Storage Model assumes that the <VM_DIR> is shared between all the cluster
nodes and the OpenNebula server. In this case, the semantics of the clone and save actions described
above are:

� Cloning: If an image is clonable, it will be copied from the image repository to <VM_DIR>/<VID>/images,
form where it will be used for the VM. If not, a symbolic link will be created from the image repos-
itory also to <VM_DIR>/<VID>/images, so effectively the VM is going to use the original image.

* Saving: This will have only effect if the image is not clonable, if it is then saving comes for free.
Therefore, if the image is not clonable and savable, the image will be moved from <VM_RDIR>/<VID>/images

to $ONE_LOCATION/var/<VID>/images.
Please note that by default <VM_DIR> is set to $ONE_LOCATION/var.

Figure 3.1: Storage Model : NFS

Non-Shared - SSH

In this scenario, the <VM_DIR> is not shared between the cluster front-end and the nodes. Note, that
<VM_DIR> can be shared between the cluster nodes to perform live migrations. The semantics of clone
and save are:

2Secure Shell

©C12G Labs S.L. 32/56 Rev20100611

� Cloning: This attribute is ignored in this configuration, since images will always be cloned from
the image repository to the <VM_DIR>/<VID>/images.

* Saving: If enabled, the image will be transferred back from <VM_DIR>/<VID>/images to $ONE_LOCATION/var/<VID

If not enabled, the image will be simply erased. It is therefore the users responsability to reuse the image
from $ONE_LOCATION/var/<VID>/images/ in subsequent uses of the VM in order to use any configura-
tion done or data stored in it.

Figure 3.2: Storage Model : SSH

LVM

There are many possible scenarios in which we can take advantage of OpenNebula’s support of block
devices, especially if we use LVM. The most powerful advantage of using LVM is snapshotting, which
results in an immediate creation of disk devices.

OpenNebula ships with a set of Transfer Manager scripts which support LVM. The idea behind these
scripts is not to provide a full-blown LVM solution, but a basic example which can be tailored to fit a
more specific scenario.

The Transfer Manager makes the assumption that the block devices defined in the VM template are
available in all the nodes i.e. if we have

source = "/dev/default/ttylinux",

then /dev/default/ttylinux must exist in the node where the VM will be deployed. This can be achieved
either by creating the device by hand or by using more complicated techniques like exporting a LVM to
a cluster.

� Cloning: A new snapshot will be created and assigned to the VM. This process is almost instan-
taneous.

� Saving: Saving disk images is supported by dumping the device to a file and scp’ing the disk image
back to the frontend.

� Stop/Migration: These features have not been implemented for this Transfer Manager, since they
depend strongly on the scenario.

©C12G Labs S.L. 33/56 Rev20100611

3.1.3 Configuration Interface

The Transfer Manager is configured in the $ONE_LOCATION/etc/oned.conf file, see the Daemon Configuration file.
Being flexible, the TM is always the same program, and different configurations are achieved by changing
the configuration file. This file regulates the assignment between actions, like CLONE or LN, and scripts,
effectively changing the semantics of the actions understood by the TM.

TM_MAD = [

name = "tm_nfs",

executable = "one_tm",

arguments = "<tm-configuration-file>",

default = "<default-tm-configuration-file"]

Current OpenNebula release contains two set of scripts for the two scenarios described above, Shared -

NFS ($ONE_LOCATION/etc/tm_nfs/tm_nfs.conf) or the Non Shared SSH2 TM ($ONE_LOCATION/etc/tm_ssh/tm_ssh.con
Each different TM will have their own directory inside $ONE_LOCATION/etc.

Lets see a sample line from the Shared - NFS configuration file:

...

CLONE = nfs/tm_clone.sh

...

Basically, the TM here is being told that whenever it receives a clone action it should call the tm_clone.sh
script with the received parameters. For more information on modifying and extending these scripts see
Customizing and Extending.

Note: Remember that if OpenNebula is installed in root, the configuration files are placed in
/etc/one.

Example Shared - NFS

To configure OpenNebula to be able to handle images with this arrangement of the storage model, add
the following in $ONE_LOCATION/etc/oned.conf, so the TM knows what set of scripts it needs to use:

TM_MAD = [

name = "tm_nfs",

executable = "one_tm",

arguments = "tm_nfs/tm_nfs.conf",

default = "tm_nfs/tm_nfs.conf"]

Example Non-shared - SSH

To configure OpenNebula to be able to handle images with non-shared arrangement of the storage model,
add the following in $ONE_LOCATION/etc/oned.conf, so the TM knows what set of scripts it needs to
use:

TM_MAD = [

name = "tm_nfs",

executable = "one_tm",

arguments = "tm_ssh/tm_ssh.conf",

default = "tm_ssh/tm_ssh.conf"]

Example LVM

To configure OpenNebula to be able to handle images with the LVM storage model, add the following in
$ONE_LOCATION/etc/oned.conf, so the TM knows what set of scripts it needs to use:

©C12G Labs S.L. 34/56 Rev20100611

TM_MAD = [

name = "tm_lvm",

executable = "one_tm",

arguments = "tm_lvm/tm_lvm.conf"]

3.1.4 Customizing and Extending

Structure: The Action Scripts

Transfer Manager (TM) architecture is highly modular. There are high level actions that OpenNebula
asks the TM to perform, which in turn the TM translates into different tasks depending on the storage
model specific configuration. Current release of OpenNebula comes with two different set of action
scripts that conforms two different TMs for different storage models (see Configuration Interface). There
is information available on how to build custom sets of action scripts to tackle custom configuration of
the storage model.

Figure 3.3: TM Structure

TM is all about moving images around and performing file system operations on (possibly) remote
hosts, so all the actions receive as arguments at least one ORIGIN or one DESTINATION, or both. These
have the form:

<host>:<path>

©C12G Labs S.L. 35/56 Rev20100611

The different available actions that the TM understands are:

� CLONE: This action will basically make a copy of the image from ORIGIN to DESTINATION. This
can mean different things depending on the storage model configuration (see Sample Configurations)

� LN: Creates a symbolic link in DESTINATION that points to ORIGIN

� MKSWAP: Generates a swap image in DESTINATION. The size is given in ORIGIN in MB3.

� MKIMAGE: Creates a disk image in DESTINATION and populates it with the files inside ORIGIN

directory.

� DELETE: Deletes ORIGIN file or directory.

� MV: Moves ORIGIN to DESTINATION.

Action scripts must conform to some rules to work. These are the general rules:

� The script should exit with code 0 on success or any other value to indicate failure.

� Everything written to STDOUT is logged to the corresponding VM log file.

� In case of failure the error message is written to STDERR surrounding the message with these
separators:

ERROR MESSAGE --8<------

error message here

ERROR MESSAGE ------>8--

There is a helper shell script with some functions defined to do some common tasks. It is located in
$ONE_LOCATION/lib/mads/tm_common.sh and can be loaded adding this line at the start of your script:

1 . $ONE LOCATION/ l i b /mads/tm common . sh

Here are the description of those functions.

� log: Takes one parameter that is a message that will be logged into the VM log file.

1 log ”Creat ing d i r e c t o r y $DST DIR”

� error message: sends an exit message to oned surrounding it by separators, use to send the error
message when a command fails.

1 e r r o r message ”F i l e ’$FILE ’ not found ”

� arg host: gets the hostname part from a parameter

1 SRC HOST=‘arg host $SRC‘

� arg path: gets the path part from a parameter

1 SRC PATH=‘arg path $SRC‘

� exec and log: executes a command and logs its execution. If the command fails the error message
is sent to oned and the script ends

1 exec and log ”chmod g+w $DST PATH”

� timeout exec and log: like exec_and_log but takes as first parameter the max number of seconds
the command can run

1 timeout exec and log 15 ”cp $SRC PATH $DST PATH”

Note: This script is placed in /usr/lib/one/mads if you installed OpenNebula in root.

3Megabyte

©C12G Labs S.L. 36/56 Rev20100611

Sample: A Shared Image Repository

As an example here is described how to modify NFS scripts for a different configuration. In this config-
uration we will have images directory shared but not <VM_DIR>.

tm ln.sh This script is responsible of creating a link in <VM_DIR> that points to the original image
when it has clone set to ”off”. As we are dealing with non shared <VM_DIR> it has to be modified so it
creates the remote directory and also makes the link in the destination host.

1 #!/bin /bash
2
3 SRC=$1
4 DST=$2
5
6 . $ONE LOCATION/ l i b /mads/tm common . sh
7
8 SRC PATH=‘arg path $SRC‘
9 DST PATH=‘arg path $DST‘

10 DST HOST=‘arg host $DST‘
11
12 DST DIR=‘dirname $DST PATH‘
13
14 log ”Creat ing d i r e c t o r y $DST DIR”
15 exec and log ”ssh $DST HOST mkdir −p $DST DIR”
16
17 log ”Link $SRC PATH”
18 exec and log ”ssh $DST HOST ln −s $SRC PATH $DST PATH”

We added the mkdir command and changed link creation to be executed in the remote machine.

tm clone.sh Here the modifications are similar to LN, changed the commands so they are executed in
the destination host.

1 #!/bin /bash
2
3 SRC=$1
4 DST=$2
5
6 . $ONE LOCATION/ l i b /mads/tm common . sh
7
8 SRC PATH=‘arg path $SRC‘
9 DST PATH=‘arg path $DST‘

10 DST HOST=‘arg host $DST‘
11

©C12G Labs S.L. 37/56 Rev20100611

12 log ”$1 $2”
13 log ”DST: $DST PATH”
14
15 DST DIR=‘dirname $DST PATH‘
16
17 log ”Creat ing d i r e c t o r y $DST DIR”
18 exec and log ”ssh $DST HOST mkdir −p $DST DIR”
19 exec and log ”ssh $DST HOST chmod a+w $DST DIR”
20
21 case $SRC in
22 http : //*)
23 log ”Downloading $SRC”
24 exec and log ”ssh $DST HOST wget −O $DST PATH $SRC”
25 ; ;
26
27 *)
28 log ”Cloning $SRC PATH”
29 exec and log ”ssh $DST HOST cp $SRC PATH $DST PATH”
30 ; ;
31 esac
32
33 exec and log ”ssh $DST HOST chmod a+w $DST PATH”

Note the ssh command appended to each of commands.
The rest of the the commands follow similar modifications, executing the commands using ssh on the

remote machine.

Adding Custom Remote URLs

When you specify a disk that has ”:” in its path is not treated in any way and it is passed to TM action
script directly. This lets us pass things like <hostname>:<path> so you can specify an image that is
located in a remote machine that is accessible using ssh or customize clone scripts so it accepts different
kinds of URLS. This modification should be done in tm_clone.sh script adding a new option in the case
statement. For example, if we want to add ftp support using wget we can add this code:

1 case $SRC in
2 f tp : //*)
3 l og ”Downloading $SRC”
4 exec and log ”wget −O $DST PATH $SRC”
5 ; ;

Note that we are using -O option of wget, that tells where to download the file. This is needed as the file
should be in an specific directory and also needs to be correctly named.

3.2 Networking

3.2.1 Overview

The physical hosts that will conform the fabric of our virtual infrastructures will need to have some
constraints in order to be able to deliver virtual networks effectively to our virtual machines. Therefore,
we can define our physical cluster under the point of view of networking as a set of hosts with one or
more network interfaces, each of them connected to a different physical network.

3.2.2 Isolating the Virtual Networks

Description

In the proposed architecture several virtual networks will share the same physical network. Doing this
makes this configuration very flexible as you do not need to setup new physical networks or configure
vLANs (IEEE 802.1Q) in the switch each time you need a new virtual network.

However sharing the same physical network also makes the virtual networks potentially vulnerable
to a compromised VM. Here we will explain a method of isolating networks at the ethernet level so the
traffic generated in different virtual networks can not be seen in others.

OpenNebula provides you with the infrastructure to dynamically create new LANs for you virtual-
ized services as you need them without the need of reconfigure your switches or any other special network
component.

©C12G Labs S.L. 38/56 Rev20100611

Figure 3.4:

Network isolation allows you to put any network service within your VMs. For example you can
put a VM with a DHCP4 server in each virtual network to handle the VM’s IP in that virtual network.

Configuration

The virtual networks are isolated by filtering the ethernet traffic in the device where the VM is attached
to. So we let the VM to send packets only to machines in the same network (those with mac addresses
in the virtual network, as defined with onevnet. This is achieved using ebtables that lets you change
bridge tables and the OpenNebula Hooks.

All the network configuration will be done in the cluster nodes, these are the additional requisites:

� ebtables package installed

� sudoers configured so oneadmin can execute ebtables

Sudoers Configuragtion Add this line to sudoers on each cluster node:

oneadmin ALL=(ALL) NOPASSWD: /sbin/ebtables *

If you happen to have ebtables binary installed in other path change the line for sudoers file accordingly.

OpenNebula Configuration You have to configure OpenNebula so the script is called each time a
new VM is created and also for VM shutdown (to delete ebtables rules). This is the configuration needed
in oned.conf:

4Dynamic Host Configuration Protocol

©C12G Labs S.L. 39/56 Rev20100611

VM_HOOK = [

name = "ebtables-start",

on = "running",

command = "/srv/cloud/one/share/hooks/ebtables-kvm", # or ebtables-xen

arguments = "one-$VMID",

remote = "yes"]

VM_HOOK = [

name = "ebtables-flush",

on = "done",

command = "/srv/cloud/one/share/hooks/ebtables-flush",

arguments = "",

remote = "yes"]

The first script takes one parameter: the VM name. The second script removes all the ebtables rules
which refer to a nonexistent VM, therefore no argument is needed. These hooks are executed when the
VM enters the running (on = "running"), shutdown or stop states. Note also that they are executed in
the cluster nodes (remote = yes). Check the oned configuration reference for more information.

Here is the script that configures ebtables for kvm machines. A version for Xen is located in
$ONE_LOCATION/share/hooks.

1 #!/ usr/bin/env ruby
2
3 r equ i r e ’pp ’
4 r e qu i r e ’ rexml/document ’
5
6 VMNAME=ARGV[0]
7
8 # Uncomment to act only on the l i s t e d br idges .
9 #FILTERED BRIDGES = [’ beth0 ’]

10
11 def a c t i v a t e (r u l e)
12 system ”sudo ebtab l e s −A #{r u l e }”
13 end

14
15 def g e t b r i d g e s
16 br idge s = Hash . new
17 b r c t l e x i t =‘ b r c t l show ‘
18 cu r b r i dg e = ””
19 b r c t l e x i t . s p l i t (”\n”) [1 . . − 1] . each do | l |
20 l = l . s p l i t
21 i f l . l ength > 1
22 cu r b r i dg e = l [0]
23 br idge s [cu r b r i dg e] = Array . new
24 br idge s [cu r b r i dg e] << l [3]
25 else

26 br idge s [cu r b r i dg e] << l [0]
27 end

28 end

29 br idge s
30 end

31
32 def g e t i n t e r f a c e s
33 br idge s = ge t b r i d g e s
34 i f de f ined ? FILTERED BRIDGES
35 FILTERED BRIDGES. c o l l e c t { |k , v | br idge s [k] } . f l a t t e n
36 else

37 br idge s . va lues . f l a t t e n
38 end

39 end

40
41 nets=‘ v i r sh −c qemu : /// system dumpxml #{VMNAME} ‘
42
43 doc=REXML: : Document . new(nets) . root
44
45 i n t e r f a c e s = g e t i n t e r f a c e s ()
46
47 doc . e lements . each (’ /domain/ dev i c e s / i n t e r f a c e ’) { | net |
48 tap=net . e lements [’ t a r g e t ’] . a t t r i b u t e s [’ dev ’]
49 i f i n t e r f a c e s . i n c lude ? tap
50 i f ace mac=net . e lements [’mac ’] . a t t r i b u t e s [’ address ’]
51
52 mac=i face mac . s p l i t (’ : ’)
53 mac[−1]= ’ 00 ’

©C12G Labs S.L. 40/56 Rev20100611

54 net mac=mac . j o i n (’ : ’)
55
56
57 i n r u l e =”FORWARD −s ! #{net mac}/ f f : f f : f f : f f : f f : 00 −o #{tap} − j DROP”
58 ou t r u l e=”FORWARD −s ! #{i f a ce mac } − i #{tap} − j DROP”
59
60 a c t i v a t e (i n r u l e)
61 a c t i v a t e (ou t r u l e)
62 end
63 }

3.3 Information and Monitoring

The Information Manager (IM) is in charge of monitoring the cluster nodes. It comes with various sensors,
each one responsible of a different aspects of the computer to be monitored (CPU, memory, hostname. . .).
Also, there are sensors prepared to gather information from different hypervisors (currently KVM and
XEN).

3.3.1 Requirements

Depending on the sensors that are going to conform the IM driver there are different requirements, mainly
the availability of the hypervisor corresponding to the sensor if one of the KVM sensor or XEN sensor are
used at all. Also, as for all the OpenNebula configurations, SSH2 access to the hosts without password
has to be possible.

3.3.2 Driver Files

This section details the files used by the Information Drivers to monitor the cluster nodes. This files are
placed in the following directories:

� $ONE_LOCATION/lib/mads/: The drivers executable files

� $ONE_LOCATION/lib/im_probes/: The cluster nodes probe to gather each monitoring metric

� $ONE_LOCATION/etc/: The drivers configuration files, usually in subdirectories in the form im_<virtualizer>.

Note: If OpenNebula was installed in system wide mode these directories become /usr/lib/one/mads,
/usr/lib/one/im_probes and /etc/one, respectively. The rest of this guide refers to the $ONE_LOCATION
paths (corresponding to self contained mode) and omits the equivalent system wide locations. More
information on installation modes can be found here

Common files

These files are used by the IM regardless of the hypervisor present on the machine to be monitored:

� $ONE LOCATION/lib/mads/one im ssh : shell script wrapper to the driver itself. Sets the envi-
ronment and other bootstrap tasks.

� $ONE LOCATION/lib/mads/one im ssh.rb : The actual Information driver.

� $ONE LOCATION/lib/im probes/* : sensors home. Little scripts or binaries that extract infor-
mation from the remote hosts. Let’s see a simple one to understand how they work:

This uses the uname command to get the hostname of the remote cluster host, and then outputs the
information as:

NAME=host1.mydomain.org

©C12G Labs S.L. 41/56 Rev20100611

Hypervisor specific

The following files contain pre-made configuration files to get the IM working with different hypervisors.
These files are not fixed, they can be modified, and even the IM can be set to work with different files
(this is set in OpenNebula configuration file, more details in next section).

There is always one obligatory attribute set by all the Information Drivers, HYPERVISOR set to
the kind of hypervisor (XEN, KVM, VMWare, EC2, etc) present on the host this particular Information
Driver is monitoring.

XEN Hypervisor

� $ONE LOCATION/etc/im xen/im xenrc : environment setup and bootstrap instructions

� $ONE LOCATION/etc/im xen/im xen.conf : This file defines the REMOTE DIR, the path where
the sensors will be uploaded in the remote physical to perform the monitoring. It also defines which
sensors will be used (you can add and remove probes as you wish), for XEN the defaults are:

cpuarchitecture=architecture.sh

nodename=name.sh

cpu=cpu.sh

xen=xen.rb

� $ONE LOCATION/lib/im probes/xen.rb : xen specific sensor.

KVM Hypervisor

� $ONE LOCATION/etc/im kvm/im kvmrc : environment setup and bootstrap instructions

� $ONE LOCATION/etc/im kvm/im kvm.conf : This file defines the REMOTE DIR, the path
where the sensors will be uploaded in the remote physical to perform the monitoring. It also
defines which sensors will be used (you can add and remove probes as you wish), for KVM the
defaults are:

cpuarchitecture=architecture.sh

nodename=name.sh

cpu=cpu.sh

kvm=kvm.rb

� $ONE LOCATION/lib/im probes/kvm.rb : kvm specific sensor.

3.3.3 OpenNebula Configuration

The OpenNebula daemon loads its drivers whenever it starts. Inside $ONE_LOCATION/etc/oned.conf

there are definitions for the drivers. The following lines, will configure OpenNebula to use the Xen
probes:

IM_MAD = [

name = "im_xen",

executable = "bin/one_im_ssh",

arguments = "im_xen/im_xen.conf",

default = "im_xen/im_xen.conf"]

Equivalently for KVM, you’d put the following in oned.conf:

©C12G Labs S.L. 42/56 Rev20100611

IM_MAD = [

name = "im_kvm",

executable = "one_im_ssh",

arguments = "im_kvm/im_kvm.conf",

default = "im_kvm/im_kvm.conf"]

And finally for EC2:

IM_MAD = [

name = "im_ec2",

executable = "one_im_ec2",

arguments = "im_ec2/im_ec2.conf",

default = "im_ec2/im_ec2.conf"]

Please remember that you can add your custom probes for later use by other OpenNebula modules like
the scheduler.

3.3.4 Testing

In order to test the driver, add a host to OpenNebula using onehost, specifying the defined IM driver:

Now give it time to monitor the host (this time is determined by the value of HOST MONITORING INTERVAL
in $ONE_LOCATION/etc/oned.conf). After one interval, check the output of onehost list, it should look
like the following:

3.4 Scheduling Policies

3.4.1 Overview

The Scheduler module is in charge of the assignment between pending Virtual Machines and known Hosts.
OpenNebula’s architecture defines this module as a separate process that can be started independently
of oned. The OpenNebula scheduling framework is designed in a generic way, so it is highly modifiable
and can be easily replace by third-party developments.

3.4.2 The Match-making Algorithm

OpenNebula comes with a match making scheduler (mm sched) that implements the Rank Scheduling
Policy. The goal of this policy is to prioritize those resources more suitable for the VM.

The algorithm works as follows:

� First those hosts that do not meet the VM requirements (see the ”REQUIREMENTS” attribute)
and do not have enough resources (available CPU and memory) to run the VM are filtered out.

� The ”RANK” expression is evaluated upon this list using the information gathered by the monitor
drivers. Any variable reported by the monitor driver can be included in the rank expression.

� Those resources with a higher rank are used first to allocate VMs.

3.4.3 Placement Policies

You can implement several placement heuristics by carefully choosing the RANK expression. Note that
each VM has its own RANK and so its own policy. This is specially relevant when configuring a Cloud
Interface as you can apply different policies to different instance types.

©C12G Labs S.L. 43/56 Rev20100611

Packing Policy

� Target: Minimize the number of cluster nodes in use

� Heuristic: Pack the VMs in the cluster nodes to reduce VM fragmentation

� Implementation: Use those nodes with more VMs running first

RANK = RUNNING_VMS

Striping Policy

� Target: Maximize the resources available to VMs in a node

� Heuristic: Spread the VMs in the cluster nodes

� Implementation: Use those nodes with less VMs running first

RANK = - RUNNING_VMS

Load-aware Policy

� Target: Maximize the resources available to VMs in a node

� Heuristic: Use those nodes with less load

� Implementation: Use those nodes with more FREECPU first

RANK = FREECPU

3.4.4 The Haizea Scheduler

The Haizea lease manager can also be used as a scheduling module in OpenNebula. Haizea allows Open-
Nebula to support advance reservation of resources and queuing of best effort requests (more generally,
it allows you to lease your resources as VMs, with a variety of lease terms). The Haizea documentation
includes a guide on how to use OpenNebula and Haizea to manage VMs on a cluster

©C12G Labs S.L. 44/56 Rev20100611

http://haizea.cs.uchicago.edu/
http://haizea.cs.uchicago.edu

Chapter 4

Using your Private Cloud

4.1 Managing Virtual Machines

OpenNebula is a VM manager that is executed and configured by a cluster administrator. This clus-
ter administrator would be also the ONE administrator, and therefore he should be the holder of the
<oneadmin> account. This guide assumes that the cluster administrator is the only user for oned,
although the system has been designed to support several users.

OpenNebula is able to assign, deploy, monitor and control VMs. This guide explains how to describe
the wanted-to-be-ran Virtual Machine, and how users typically interact with the system.

4.1.1 Virtual Machine Model

A Virtual Machine within the OpenNebula system consists of:

� A capacity in terms memory and CPU

� A set of NICs attached to one or more virtual networks

� A set of disk images. In general it could be necessary to transfer some of these image files to/from
the execution host.

� A state file (optional) or recovery file, that contains the memory image of a running VM plus
some hypervisor specific information.

The above items, plus some additional VM attributes like the OS1 kernel and context information to
be used inside the VM, are specified in a VM template file.

Each VM in OpenNebula is identified by an unique number, the <VID>. Also, the user can assign it
a name in the VM template, the default name for each VM is one-<VID>.

Virtual Machine Life-cycle

The life-cycle of a virtual machine within the system includes the following stages (note that this is a
simplified version):

� Pending (pend): By default a VM starts in the pending state, waiting for a resource to run on.

� Hold (hold): The owner has held the VM and it will not be scheduled until it is released.

� Prolog (prol): The system is transferring the VM files (disk images and the recovery file).

� Running (runn): The VM is running (note that this stage includes booting and shutting down
phases). In this state, the virtualization driver will periodically monitor it.

1Operating System

©C12G Labs S.L. 45/56 Rev20100611

� Migrate (migr): The VM is migrating from one resource to another. This can be a life migration
or cold migration (the VM is saved and VM files are transferred to the new resource).

� Epilog (epil): In this phase the system clean ups the cluster node used to host the VM, and
additionally disk images to be saved are copied back to the cluster front-end.

� Stopped (stop): The VM is stopped. VM state has been saved and it has been transferred back
along with the disk images.

� Suspended (susp): Same as stopped, but the files are left in the remote resource to later restart
the VM there (i.e. there is no need to re-schedule the VM).

� Failed (fail): The VM failed.

� Unknown (unknown): The VM couldn’t be reached, it is in an unknown state.

� Done (done): The VM is done. VMs in this state wont be shown with ”onevm list” but are kept
in the database for accounting purposes.

Figure 4.1: Virtual Machine States

4.1.2 User Environment

In order to use OpenNebula, you need to set the following variables in your environment. You may want
to place them, in the .bashrc of the <oneadmin> account for commodity:

©C12G Labs S.L. 46/56 Rev20100611

ONE LOCATION If OpenNebula was installed in self-
contained mode, this variable must be set
to <destination folder>. Otherwise, in system
wide mode, this variable must be unset. More
info on installation modes can be found here

ONE XMLRPC http://localhost:2633/RPC2
PATH $ONE LOCATION/bin:$PATH if self-

contained. Otherwise this is not needed.
ONE AUTH Needs to point to a file containing

just a single line stating ”user-
name:password”. If ONE AUTH is not
defined, $HOME/.one/one auth will be used
instead. If no auth file is present, OpenNebula
cannot work properly, as this is needed by the
core, the CLI, and the cloud components as well.

4.1.3 Virtual Machine Template

OpenNebula templates are designed to be hypervisor-agnostic, but still there are some peculiarities to be
taken into account, and mandatory attributes change depending on the target hypervisor. Hypervisor
specific information for this attributes can be found in the drivers configuration guides:

� Xen Adaptor

� KVM Adaptor

� VMware Adaptor

OpenNebula has been designed to be easily extended, so any attribute name can be defined for later
use in any OpenNebula module. There are some pre-defined attributes, though.

Please check the Virtual Machine definition file reference for details on all the sections.

A VM Template Example

For example, the following template defines a VM with 512MB of memory and one CPU. The VM has
two disks: sda supported by an image file; and sdb (a swap partition). Only one NIC is defined with
a predefined MAC address. In this case, between all the suitable hosts (those that meets CPU and
MEMORY requirements, and also CPUSPEED > 1000 requirement), OpenNebula will pick the host
with more free CPU.

#---------------------------------------

VM definition example

#---------------------------------------

NAME = vm-example

CPU = 1

MEMORY = 512

--- kernel & boot device ---

OS = [

kernel = "/vmlinuz",

initrd = "/initrd.img",

root = "sda"]

--- 2 disks ---

©C12G Labs S.L. 47/56 Rev20100611

http://localhost:2633/RPC2

DISK = [

source = "/local/xen/domains/etch/disk.img",

target = "sda",

readonly = "no"]

DISK = [

type = swap,

size = 1024,

target = "sdb",

readonly = "no"]

--- 1 NIC ---

NIC = [mac="00:ff:72:17:20:27"]

Note that you can add as many DISK and NIC attributes as you need

4.1.4 Command Line Interface

OpenNebula comes with a rich command line interface intended for users fond of consoles. There are
commands to manage three basic aspects of OpenNebula: virtual machines, hosts and virtual net-
works.

A complete reference for these three commands can be found here. The following subsections show
the basics of the available commands with simple usage examples.

Managing Virtual Machines

This command enables virtual machine management. Actions offered are:

� create (a VM in OpenNebula’s VM pool)

� deploy (on a particular cluster node)

� shutdown

� livemigrate (the virtual machine is transferred between cluster nodes with no noticeable downtime)

� migration (machine gets stopped and resume elsewhere)

� hold

� release (from hold state)

� stop (virtual machine state is transferred back to OpenNebula for a possible reschedule)

� cancel

� suspend (virtual machine state is left in the cluster node for resuming)

� resume

� delete

� restart(resubmits the virtual machine after failure)

� list (outputs all the available VMs)

� show (outputs information for a specific VM)

� top (lists VMs continously)

©C12G Labs S.L. 48/56 Rev20100611

� history (gets VMs history of execution on the cluster nodes)

Assuming we have a VM template called myVM.one describing a virtual machine. Then, we can
allocate the VM in OpenNebula issuing a:

afterwards, the VM can be listed with the list option:
and details about it can be obtained with show:

Exploring the Cluster

This command enables cluster nodes scouting. Actions offered are:

� show (details of a particular cluster node)

� list (lists nodes in the host pool)

� top (lists host continuously)

Assuming a cluster node called hosts01 running the XEN hypervisor and without shared folders, we
can list the available nodes:

and retrieve more detailed information for this node using show:

onevnet

This command enables the management of virtual networks. Actions offered are:

� create (a virtual network in OpenNebula’s VN pool)

� show (details of a particular virtual network)

� delete

� list (lists all the VNs in the VN pool)

Assuming a virtual network template called myVN.net, we can create the virtual network within
OpenNebula issuing:

and then list it using:
and obtain details about it with:

4.1.5 Usage Scenarios

OpenNebula can be used to deploy different solutions for on-demand execution of services. We
have prepared the following use cases to illustrate its functionality in typical computing scenarios:

� On-demand Scaling of Computing Clusters

� On-demand Infrastructure for Training

� Scaling out Computing Clusters to Amazon EC2

� Scaling out Web Servers to Amazon EC2

4.2 Managing Virtual Networks

A cluster node is connected to one or more networks that are available to the virtual machines through
the corresponding bridges. To set up a virtual networks you just need to know the name of the bridge to
bind the virtual machines to.

In this guide you’ll learn how to define and use virtual networks. For the sake of completeness the
following examples assumes that the cluster nodes are attached to two physical networks:

� A private network, through the virtual bridge vbr0

� A network with Internet connectivity, through vbr1

©C12G Labs S.L. 49/56 Rev20100611

4.2.1 Defining a Virtual Network

OpenNebula allows for the creation of Virtual Networks by mapping them on top of the physical ones.
All Virtual Networks are going to share a default value for the MAC preffix, set in the oned.conf file.

There are two types of Virtual Networks in OpenNebula:

� Fixed, defines a fixed set of IP-MAC pair addresses

� Ranged, defines a class network.

Virtual Networks created by oneadmin can be used by every other user.

Fixed Virtual Networks

A fixed network consists of a set of IP addresses and associated MACs, defined in a text file.
We need four pieces of information to define a fixed VN:

� NAME: Name of the Virtual Network.

� TYPE: Fixed, in this case.

� BRIDGE: Name of the physical bridge in the physical host where the VM should connect its
network interface.

� LEASES: Definition of the IP-MAC pairs. If an IP is defined, and there is no associated MAC,
OpenNebula will generate it using the following rule: MAC = MAC_PREFFIX:IP. So, for example, from
IP 10.0.0.1 and MAC PREFFIX 00:16, we get 00:16:0a:00:00:01. Defining only a MAC address with
no associated IP is not allowed.

©C12G Labs S.L. 50/56 Rev20100611

For example to create a Fixed Virtual Network, called Public with the set of public IPs to be used
by the VMs, just create a file with the following contents:

NAME = "Public"

TYPE = FIXED

#We have to bind this network to ’’virbr1’’ for Internet Access

BRIDGE = vbr1

LEASES = [IP=130.10.0.1, MAC=50:20:20:20:20:20]

LEASES = [IP=130.10.0.2, MAC=50:20:20:20:20:21]

LEASES = [IP=130.10.0.3]

LEASES = [IP=130.10.0.4]

Ranged Virtual Networks

This type of VNs allows for a definition supported by a base network address and a size. So we need to
define:

� NAME: Name of the Virtual Network.

� TYPE: Ranged, in this case.

� BRIDGE: Name of the physical bridge.

� NETWORK ADDRESS: Base network address to generate IP addresses.

� NETWORK SIZE: Number of hosts that can be connected using this network. It can be defined
either using a number or a network class (B or C).

The following is an example of a Ranged Virtual Network template:

NAME = "Red LAN"

TYPE = RANGED

#Now we’ll use the cluster private network (physical)

BRIDGE = vbr0

NETWORK_SIZE = C

NETWORK_ADDRESS = 192.168.0.0

Default value for the network size can be found in oned.conf.

4.2.2 Adding and Deleting Virtual Networks

Once a template for a VN has been defined, the onevnet command can be used to create it.

To create the previous networks put their definitions in two different files, public.net and red.net,
respectively. Then, execute:

Also, onevnet can be used to query OpenNebula about available VNs:

with USER the owner of the network and #LEASES the number of IP-MACs assigned to a VM from
this network.

To delete a virtual network just use onevnet delete. For example to delete the previous networks:

You can also check the IPs leased in a network with the onevnet show command

Check the onevnet command help or reference guide for more options to list the virtual networks.

©C12G Labs S.L. 51/56 Rev20100611

4.2.3 Getting a Lease

A lease from a virtual network can be obtained by simply specifying the virtual network name in the NIC

attribute.
For example, to define VM with two network interfaces, one connected to Red LAN and other connected

to Public just include in the template:

NIC=[NETWORK="Public"]

NIC=[NETWORK="Red LAN"]

You can also request an specific address just by adding the IP or MAC attributes to NIC:

NIC=[NETWORK="Red LAN", IP=192.168.0.3]

When the VM is submitted, OpenNebula will look for available IPs in the Public and Red LAN virtual
networks. If successful, the onevm show command should return information about the machine, including
network information.

Note that if OpenNebula is not able to obtain a lease from a network the submission will fail.
Now we can query OpenNebula with onevnet show to find out about given leases and other VN

information:
Note that there is one LEASE active in each network
IP 192.168.0.1 is in use by Virtual Machine 12

4.2.4 Using the Leases within the Virtual Machine

Hypervisors can attach a specific MAC address to a virtual network interface, but Virtual Machines need
to obtain an IP address. There are a variety of ways to achieve this within OpenNebula:

� Obtain the IP from the MAC address, using the default MAC assignment schema (PREFERRED)

� Use the CONTEXT attribute, check the Contextualization Guide

Configuring the Virtual Machine to use the Leases

With OpenNebula you can also derive the IP address from the MAC address using the MAC PREFFIX:IP
rule. In order to achieve this we provide a context script for Debian based systems. This script can be
easily adapted for other distributions, check dev.opennebula.org.

To configure the Virtual Machine follow these steps:
These actions are to configure the VM, the commands refer to the VMs root file system

� Copy the script$ONE_LOCATION/share/scripts/vmcontext.sh into the /etc/init.d directory in
the VM root file system.

� Execute the script at boot time before starting any network service, usually runlevel 2 should work.

Having done so, whenever the VN boots it will execute this script, which in turn would scan the
available network interfaces, extract their MAC addresses, make the MAC to IP conversion and construct
a /etc/network/interfaces that will ensure the correct IP assignment to the corresponding interface.

4.3 Contextualizing Virtual Machines

4.3.1 Overview

The method we provide to give configuration parameters to a newly started virtual machine is using an
ISO2 image (OVF recommendation). This method is network agnostic so it can be used also to configure

2International Organization for Standardization

©C12G Labs S.L. 52/56 Rev20100611

http://dev.opennebula.org

network interfaces. In the VM description file you can specify the contents of the iso file (files and
directories), tell the device the ISO2 image will be accessible and specify the configuration parameters
that will be written to a file for later use inside the virtual machine.

Figure 4.2:

In this example we see a Virtual Machine with two associated disks. The Disk Image holds the
filesystem where the Operating System will run from. The ISO2 image has the contextualization for that
VM:

� context.sh: file that contains configuration variables, filled by OpenNebula with the parameters
specified in the VM description file

� init.sh: script called by VM at start that will configure specific services for this VM instance

� certificates: directory that contains certificates for some service

� service.conf: service configuration

This is just an example of what a contextualization image may look like. Only context.sh is included
by default. You have to specify the values that will be written inside context.sh and the files that will
be included in the image.

4.3.2 Defining context

In VM description file you can tell OpenNebula to create a contextualization image and to fill it with
values using CONTEXT parameter. For example:

CONTEXT = [

hostname = "$NAME",

ip_private = "$NIC[IP, NETWORK=\"Private LAN\"]",

ip_gen = "10.0.0.$VM_ID",

files = "/service/init.sh /service/certificates /service/service.conf",

target = "sdc"

]

Variables inside CONTEXT section will be added to context.sh file inside the contextualization image.
The variables starting with $ are substituted by the values that this specific VM instance has (you can
check the values with onevm show). In this case $NAME gets its value from the NAME specified in the
VM description file. $NIC[IP, NETWORK="Private LAN"] will get the IP assigned to the interface that
associated to Private LAN network.

The file generated will be something like this:

©C12G Labs S.L. 53/56 Rev20100611

Context variables generated by OpenNebula

hostname="somename"

ip_private="192.168.0.5"

ip_gen="10.0.0.85"

files="/service/init.sh /service/certificates /service/service.conf"

target="sdc"

Some of the variables have special meanings:

Attribute Description
files Files and directories that will be included in the contextualization image
target device where the contextualization image will be available to the VM instance.

Please note that the proper device mapping may depend on the guest OS1, e.g.
ubuntu VMs should use hd* as the target device

4.3.3 Using Context

The VM should be prepared to use the contextualization image. First of all it needs to mount the
contextualization image somewhere at boot time. Also a script that executes after boot will be useful to
make use of the information provided.

The file context.sh is compatible with bash syntax so you can easilly source it inside a shellscript to
get the variables that it contains.

4.3.4 EXAMPLE

Here we propose a way to use this contextualization data. Each unix has their own filesystem layout and
way of handling init scripts, this examples assumes a debian-based virtual machine.

We are going to use contextualization data to set the hostname, the IP address and a user with known
ssh keys.

First thing, lets outline the CONTEXT section of the VM template:

CONTEXT = [

hostname = "$NAME",

ip_public = "$NIC[IP, NETWORK=\"Public\"]",

username = virtualuser

files = "/vms_configuration/id_rsa.pub /vms_configuration/init.sh",

target = "sdc"

]

The OpenNebula front-end will thus require a /vms_configuration folder with:

� id_rsa.pub: Public ssh key to be added to the trusted ssh keys of the new user

� init.sh: script that will perform the configuration. Explained below.

Now we will need to configure the VM to make use of this data. We are going to place in /etc/rc.local

as:

1 #!/bin /sh −e
2
3 mount −t i s o 9660 /dev/ sdc /mnt
4
5 i f [− f /mnt/ context . sh]
6 . /mnt/ i n i t . sh
7 f i
8
9 umount /mnt

10
11 ex i t 0

©C12G Labs S.L. 54/56 Rev20100611

We use an indirection (rc.local calls init.sh) so changing the script means editing a file locally rather that
changing it inside the VMs.

The init.sh script will be the one actually doing the work:

1 #!/bin /bash
2
3 i f [− f /mnt/ context . sh]
4 . /mnt/ context . sh
5 f i
6
7 hostname $HOSTNAME
8 i f c o n f i g eth 0 $IP PUBLIC
9

10 useradd −m $USERNAME
11
12 mkdir −p ˜$USERNAME/ . ssh
13 cat /mnt/ id r sa . pub >> ˜$USERNAME/ . ssh / author i zed keys
14
15 chown −R $USERNAME /home/$USERNAME

4.4 A VM sample with context & network

The purpose of this section is to demonstrate how to quickly deploy a VM with OpenNebula in a few
easy steps. We will assume that you have properly configured OpenNebula and that you have at least
one worker node running KVM (this guide does not work with Xen for the moment).

Downloading the pre-configured VM

We have prepared and contextualized a VM which is available for download here. The VM runs ttylinux.

$ cd $ mkdir one-templates $ cd one-templates $ wget http://dev.opennebula.org/attachments/download/61/ttylinux.tar.gz
$ tar xvzf ttylinux.tar.gz

Preparing the Network

For this example we are going to use the simplest possible network configuration. We provide a file with
the package which is a network template example, called small network.net. You should edit that file
and change the LEASES entries to available IPs from your network.

You should also change the BRIDGE entry if you Hypervisor is configured to use a different bridge.

Once the file is prepared we can create the network:

Modifying the template

The VM template that you have just downloaded, ttylinux.one, has a few parameters that you should
adjust to your convenience:

� source = ”/path/to/ttylinux.img”,

� files = ”/path/to/init.sh /path/to/id dsa.pub”,

� username = ”opennebula”

� ip public = ”x.x.x.x”

Do not uncomment the CONTEXT section just yet, though.

You should choose the ip public field to be an IP which does not match any of the predefined LEASES
of small network.net (only for demonstration purposes).

Finally copy your public key to the directory where you downloaded the VM. Be sure to rename
id dsa.pub to id rsa.pub in the VM template if you are using an RSA key.

©C12G Labs S.L. 55/56 Rev20100611

http://dev.opennebula.org/attachments/download/170/ttylinux.tar.gz
http://minimalinux.org/ttylinux

Running the VM

We are ready to deploy the VM. To do so simply do:
It will take a minute or so to copy the image to $ONE LOCATION/var and to boot up the system.

In the mean time we can figure out what IP the VM will have so that we can ssh into it.
By now, the VM should be up and running:
Note: If the STAT attribute is not runn you should read the logs to see why it did not boot. You can

find these logs in $ONE LOCATION/var/<id>/vm.log (vm specific log) and $ONE LOCATION/var/oned.log.
We can ssh into the VM. The user is root and the password is password:
You might have been wondering how did the VM get automagically configured with an IP from the

pool of IPs defined by the ONE Network associated to the VM template. Basically, we developed a script
that runs during the bootup procedure which configures the IP address based on the MAC address of the
VM. This is more thoroughly explained here.

Running the VM again with a CONTEXT

We have not yet used the CONTEXT feature of OpenNebula which not only provides a simple way to
configure the IP of the VM, but which also allows us to configure users, public keys, the host name, and
any other thing we might think of. You can read a more detailed explanation on how to contextualize
here.

Edit the ttylinux.one template, uncomment the CONTEXT section and redeploy the VM.
Now we can ssh to the VM without entering a password, since the id dsa.pub has been copied to the

authorized keys of both root and the username account you have define in the template.
As you can see the IP specified in the CONTEXT section overrides the IP generated by OpenNebula.

Debugging

Sometimes for unexpected reasons the VMs won’t boot. In that case the best way to debug the booting
process is by enabling VNC. To do so simply add the following to your VM template:

Read more on this here.

©C12G Labs S.L. 56/56 Rev20100611

http://opennebula.org/documentation:rel1.4:template#i_o_devices_section

	Getting Started
	Building a Private Cloud
	What is a Private Cloud?
	The User View
	How the System Operates

	Planning the Installation
	Overview
	System Requirements
	Preparing the Cluster
	Planning Checklist

	Platform Notes
	Ubuntu/Kubuntu
	Debian Lenny
	Fedora 8
	Gentoo
	Arch
	CentOS 5 / RHEL 5
	openSUSE 11
	MAC OSX 10.4 10.5

	Installing the Software
	Verifying the Installation

	Configuring OpenNebula
	OpenNebula Components
	Start & Stop OpenNebula
	OpenNebula Users
	OpenNebula Hosts
	Logging and Debugging

	Configuring the Virtualization Adaptors
	Xen Adaptor
	Xen Configuration
	Driver Files
	Configuration
	Xen Specific Template Attributes
	Testing

	KVM Adaptor
	KVM Configuration
	Driver Files
	Configuration
	KVM Specific Template Attributes
	Testing

	VMware Adaptor
	VMware Configuration
	Front-end Configuration
	Driver Installation
	Driver Files
	Configuration
	VMware Template Attributes
	Using the VMware Driver

	Customizing your Private Cloud
	Storage and Image Management
	The Image Life-Cycle
	Physical Cluster Configuration
	Configuration Interface
	Customizing and Extending

	Networking
	Overview
	Isolating the Virtual Networks

	Information and Monitoring
	Requirements
	Driver Files
	OpenNebula Configuration
	Testing

	Scheduling Policies
	Overview
	The Match-making Algorithm
	Placement Policies
	The Haizea Scheduler

	Using your Private Cloud
	Managing Virtual Machines
	Virtual Machine Model
	User Environment
	Virtual Machine Template
	Command Line Interface
	Usage Scenarios

	Managing Virtual Networks
	Defining a Virtual Network
	Adding and Deleting Virtual Networks
	Getting a Lease
	Using the Leases within the Virtual Machine

	Contextualizing Virtual Machines
	Overview
	Defining context
	Using Context
	EXAMPLE

	A VM sample with context & network

