
OpenNebula 1.4 Reference Guide

C12G Labs S.L.

Rev20100611

Copyright ©2010 C12G Labs

Although the information in this document has been care-
fully reviewed, C12G Labs does not warrant it to be free of errors
or omissions. C12G Labs reserves the right to make corrections,
updates, revisions, or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY C12G
LABS THE SOFTWARE DESCRIBED IN THIS DOCUMENT
IS PROVIDED ON ”AS IS” BASIS, WITHOUT ANY WAR-
RANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES CONCERNING THE INSTALLATION,
USE OR PERFORMANCE OF PRODUCT. C12G AND ITS
SUPPLIERS DISCLAIM ANY AND ALL WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF MERCHANTABIL-
ITY FITNESS FOR A PARTICULAR PURPOSE AND/OR
NON-INFRINGEMENT. C12G AND ITS SUPPLIERS DO
NOT WARRANT THAT PRODUCT WILL MEET USER’S
REQUIREMENTS OR THAT THE OPERATION THEREOF
WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT
ERRORS WILL BE CORRECTED. YOU ARE SOLELY
RESPONSIBLE FOR DETERMINING THE APPROPRIATE-
NESS OF USING THE WORK AND ASSUME ANY RISKS
ASSOCIATED WITH YOUR EXERCISE OF PERMISSIONS
UNDER THIS LICENSE.

Document redistribution
and translation

This document is protected by copyright and you may not re-
distribute it or translate it into another language, in part or in
whole.

Trademarks C12G is a pending trademark in the European Union and in the
United States. All other tradermakrs are property of their respec-
tive owners. Other product or company names mentioned may be
trademarks or trade names of their respective companies.

Contents

1 Configuration 5
1.1 Daemon Configuration File . 5

1.1.1 Daemon Configuration Attributes . 5
1.1.2 Information Drivers . 6
1.1.3 Transfer Drivers . 6
1.1.4 Virtualization Drivers . 7
1.1.5 Hook System . 8
1.1.6 Example Configuration File . 9

2 Usage 10
2.1 Virtual Machine Definition File . 10

2.1.1 Capacity Section . 10
2.1.2 OS and Boot Options Section . 10
2.1.3 Disks Section . 11
2.1.4 Network Section . 11
2.1.5 I/O Devices Section . 12
2.1.6 Placement Section . 12
2.1.7 Context Section . 13
2.1.8 RAW Section . 14

2.2 Command Line Interface . 14
2.2.1 onevm . 15
2.2.2 onehost . 17
2.2.3 onevnet . 19
2.2.4 oneuser . 19

3 Programming 21
3.1 Libvirt API . 21

3.1.1 Requirements . 22
3.1.2 Configuration . 22
3.1.3 Checking the installation . 22
3.1.4 Usage Examples . 22
3.1.5 Devices . 24

3.2 EC2 Query API . 26
3.2.1 User Account Configuration . 26
3.2.2 Hello Cloud! . 27

3.3 OpenNebula OFG OCCI API . 28
3.3.1 Resources . 28
3.3.2 Methods . 28
3.3.3 Data Schema (XML Format) . 28
3.3.4 Authentication & Authorization . 30
3.3.5 HTTP Headers . 31
3.3.6 Return Codes . 31
3.3.7 Pool Resource Methods . 31
3.3.8 Entity Resource Methods . 32

©C12G Labs S.L. 3/36 Rev20100611

3.3.9 Implementation Notes . 33

4 Internals 34
4.1 Architecture . 34

4.1.1 Tools . 34
4.1.2 OpenNebula Core . 35
4.1.3 Drivers . 36

©C12G Labs S.L. 4/36 Rev20100611

Chapter 1

Configuration

1.1 Daemon Configuration File

The OpenNebula daemon oned manages the cluster nodes, virtual networks, virtual machines and users.
The configuration file for the daemon is called oned.conf and it is placed inside the $ONE_LOCATION/etc
directory. In this reference document we describe all the format and options that can be specified in
oned.conf.

Note: If OpenNebula was installed in system wide mode this directory becomes /etc/one/. The
rest of this guide refers to the $ONE_LOCATION paths (corresponding to self contained mode) and omits
the equivalent system wide locations. More information on installation modes can be found here.

1.1.1 Daemon Configuration Attributes

� HOST_MONITORING_INTERVAL : Time in seconds between host monitorization

� VM_POLLING_INTERVAL : Time in seconds between virtual machine monitorization

� VM_DIR : Remote path to store the VM images, it should be shared between all the cluster nodes
to perform live migrations. This path will be used for all the cluster nodes.

� MAC_PREFIX: Default MAC prefix to generate virtual network MAC addresses

� NETWORK_SIZE: Default size for virtual networks

� PORT : Port where oned will listen for xml-rpc calls

� DEBUG_LEVEL : Sets the level of verbosity of $ONE_LOCATION/var/oned.log log file. Possible values
are:

DEBUG LEVEL Meaning
0 ERROR
1 WARNING
2 INFO
3 DEBUG

Example of this section:

#---

Daemon configuration attributes

#---

HOST_MONITORING_INTERVAL = 10

VM_POLLING_INTERVAL = 10

VM_DIR = /local/images

©C12G Labs S.L. 5/36 Rev20100611

MAC_PREFIX = "00:01"

NETWORK_SIZE = 254

PORT = 2633

DEBUG_LEVEL = 3

1.1.2 Information Drivers

The information drivers are used to gather information from the cluster nodes, and they depend on the
virtualizer you are using. You can define more than one information manager but make sure it has
different names. To define it, the following needs to be set:

� name: name for this information driver.

� executable: path of the information driver executable, can be an absolute path or relative to
$ONE_LOCATION/lib/mads (or /usr/lib/one/mads/ in a system wide installation)

� arguments: for the driver executable, usually a probe configuration file, can be an absolute path
or relative to $ONE_LOCATION/etc (or /etc/one/ in a system wide installation).

� default: default values and configuration parameters for the driver, can be an absolute path or
relative to $ONE_LOCATION/etc (or /etc/one/ in a system wide installation).

For more information on configuring the information and monitoring system and hints to extend it
please check the information driver configuration guide.

Sample configuration:

#---

Information Driver Configuration

#---

IM_MAD = [

name = "im_kvm",

executable = "bin/one_im_ssh",

arguments = "im_kvm/im_kvm.conf",

default = "im_kvm/im_kvm.conf"]

1.1.3 Transfer Drivers

The transfer drivers are used to transfer, clone, remove and create VM images. You will be using one
transfer driver or another depending on the storage layout of your cluster. You can define more than one
transfer manager (e.g. you have different configurations for several cluster nodes) but make sure it has
different names. To define it, there needs to be set:

� name: name for this transfer driver.

� executable: path of the transfer driver executable, can be an absolute path or relative to $ONE_LOCATION/lib/mads
(or /usr/lib/one/mads/ in a system wide installation)

� arguments: for the driver executable, usually a commands configuration file, can be an absolute
path or relative to $ONE_LOCATION/etc (or /etc/one/ in a system wide installation)

for the driver executable

� default: default values and configuration parameters for the driver, can be an absolute path or
relative to $ONE_LOCATION/etc (or /etc/one/ in a system wide installation)

©C12G Labs S.L. 6/36 Rev20100611

For more information on configuring different storage alternatives please check the storage configuration guide.

Sample configuration:

#---

Transfer Driver Configuration

#---

TM_MAD = [

name = "tm_ssh",

executable = "one_tm",

arguments = "tm_ssh/tm_ssh.conf",

default = "tm_ssh/tm_ssh.conf"]

1.1.4 Virtualization Drivers

The virtualization drivers are used create, control and monitor VMs on the cluster nodes. You can define
more than one virtualization driver (e.g. you have different virtualizers in several cluster nodes) but make
sure it has different names. To define it, the following needs to be set:

� name: name of the virtualization driver.

� executable: path of the virtualization driver executable, can be an absolute path or relative to
$ONE_LOCATION/lib/mads (or /usr/lib/one/mads/ in a system wide installation)

� arguments: for the driver executable

� type: driver type, supported drivers: xen, kvm or ec2

� default: default values and configuration parameters for the driver, can be an absolute path or
relative to $ONE_LOCATION/etc (or /etc/one/ in a system guide installation)

For more information on configuring and setting up the virtualizer please check the guide that suits
you:

� Xen Adaptor

� KVM Adaptor

� VMware Adaptor

� VirtualBox (planned for 1.4.2)

Sample configuration:

#---

Virtualization Driver Configuration

#---

VM_MAD = [

name = "vmm_kvm",

executable = "one_vmm_kvm",

default = "vmm_kvm/vmm_kvm.conf",

type = "kvm"]

©C12G Labs S.L. 7/36 Rev20100611

1.1.5 Hook System

Hooks in OpenNebula are programs (usually scripts) which execution is triggered by a change in state
in Virtual Machines. The hooks can be executed either locally or remotely in the node where the VM is
running. To configure the Hook System the following needs to be set in the OpenNebula configuration
file:

� executable: path of the hook driver executable, can be an absolute path or relative to $ONE LOCATION/lib/mads
(or /usr/lib/one/mads/ if OpenNebula was installed in /)

� arguments : for the driver executable, can be an absolute path or relative to $ONE LOCATION/etc
(or /etc/one/ if OpenNebula was installed in /)

Sample configuration:

HM_MAD = [

executable = "one_hm"]

Then each hook has to be configured, and for each one the following needs to be set:

� name: for the hook, useful to track the hook (OPTIONAL).

� on: when the hook should be executed,

– - CREATE, when the VM is created (onevm create)

– - RUNNING, after the VM is successfully booted

– - SHUTDOWN, after the VM is shutdown

– - STOP, after the VM is stopped (including VM image transfers)

– - DONE, after the VM is deleted or shutdown

� command: use absolute path here

� arguments: for the hook. You can access to VM template variables with $

– - $ATTR, the value of an attribute e.g. $NAME or $VMID

– - $ATTR[VAR], the value of a vector e.g. $NIC[MAC]

– - $ATTR[VAR, COND], same of previous but COND select between multiple ATTRs e.g.
$NIC[MAC, NETWORK=”Public”]

� remote: values,

– - YES, The hook is executed in the host where the VM was allocated

– - NO, The hook is executed in the OpenNebula server (default)

Sample configuration:

VM_HOOK = [

name = "dhcp",

on = "create",

command = "/bin/echo",

arguments = "$NAME > /tmp/test.$VMID"]

©C12G Labs S.L. 8/36 Rev20100611

1.1.6 Example Configuration File

HOST_MONITORING_INTERVAL = 10

VM_POLLING_INTERVAL = 10

VM_DIR=/local/one_images

PORT=2633

DEBUG_LEVEL=3

NETWORK_SIZE = 254

MAC_PREFIX = "00:50"

IM_MAD = [

name = "im_kvm",

executable = "one_im_ssh",

arguments = "im_kvm/im_kvm.conf"]

VM_MAD = [

name = "vmm_kvm",

executable = "one_vmm_kvm",

default = "vmm_kvm/vmm_kvm.conf",

type = "kvm"]

TM_MAD = [

name = "tm_nfs",

executable = "one_tm",

arguments = "tm_nfs/tm_nfs.conf"]

HM_MAD = [

executable = "one_hm"]

VM_HOOK = [

name = "mail",

on = "running",

command = "/usr/local/one/bin/send_mail",

arguments = "$VMID $NAME",

remote = "no"]

©C12G Labs S.L. 9/36 Rev20100611

Chapter 2

Usage

2.1 Virtual Machine Definition File

A template file consists of a set of attributes that defines a Virtual Machine. The syntax of the template
file is as follows:

� Anything behind the pound sign (#) is a comment.

� Strings are delimited with double quotes (”), if the a double quote is part of the string it needs to
be escaped (\”).

� Single Attributes are in the form:

� Vector Attributes that contain several values can be defined as follows:

2.1.1 Capacity Section

The following attributes can be defined to specified the capacity of a VM.

Attribute Description
NAME Name that the VM will get for description purposes. If NAME is not supplied a

name generated by one will be in the form of one-<VID>.
MEMORY Amount of RAM required for the VM, in Megabytes.
CPU Percentage of CPU divided by 100 required for the Virtual Machine. Half a pro-

cessor is written 0.5.
VCPU Number of virtual cpus. This value is optional, the default hypervisor behavior

is used, usually one virtual CPU

Example:

2.1.2 OS and Boot Options Section

The OS1 system is defined with the OS1 vector attribute. The following sub-attributes are supported:
Note the hypervisor column states that the attribute is Optional, Mandatory, or - not supported

for that hypervisor

OS1 Sub-Attribute Description XEN KVM
KERNEL path to the OS1 kernel to boot the image M see (*) O
INITRD path to the initrd image O (for kernel) O (for kernel)
ROOT device to be mounted as root O (for kernel) O (for kernel)
KERNEL CMD arguments for the booting kernel O (for kernel) O (for kernel)
BOOTLOADER path to the bootloader executable M see (*) O
BOOT boot device type: hd,fd,cdrom ,network - M

1Operating System

©C12G Labs S.L. 10/36 Rev20100611

(*) Xen needs a kernel or a bootloader to be specified. If both are set in the template, the kernel boot
method will be used.

Example, a VM booting from sda1 with kernel /vmlinuz :

2.1.3 Disks Section

The disks of a VM are defined with the DISK vector attribute. You can define as many DISK attributes
as you need. There are two special disk types that are created on-the-fly in the target resource: swap

and fs. The following sub-attributes for DISK are supported:

Note the hypervisor column states that the attribute is Optional, Mandatory, or - not supported
for that hypervisor

DISK Sub-Attribute Description XEN KVM

TYPE disk type:floppy,
disk, cdrom, swap, fs,
block

O (only swap, fs and
block) (if not present,
disk will be assumed)

O

SOURCE disk file location path
or URL2

M M

SIZE size in Mb for swap, fs
and block images

M (for swap and fs) M (for swap and fs)

FORMAT filesystem type for the
fs images

M (for fs) M (for fs)

TARGET device to map disk M M
CLONE clone this image yes

(default), or no
O O

SAVE save this image after
shutting down the VM
yes, or no (default)

O O

READONLY yes, or no (default) O O
BUS type of disk device to

emulate: ide, scsi
- O

Example, a VM with three disks: the base system attached to sda1, a clean filesystem attached to
sda2, and a swap partition attached to sda3. Note that fs and swap are generated on-the-fly:

For more information on image management and moving please check the Storage guide.

2.1.4 Network Section

Each network interface of a VM is defined with the NIC vector attribute. You can define as many NIC

attributes as you need. The following sub-attributes for NIC are supported:

Note the hypervisor column states that the attribute is Optional, Mandatory, or - not supported
for that hypervisor

2Uniform Resource Locator

©C12G Labs S.L. 11/36 Rev20100611

NIC Sub-Attribute Description XEN KVM

NETWORK Name of the network, as defined by onevnet to attach this
device

O O

IP Request an specific IP from the NETWORK O O
MAC HW address associated with the network interface O O
BRIDGE Name of the bridge the network device is going to be at-

tached to.
O O

TARGET name for the tun device created for the VM - O
SCRIPT name of a shell script to be executed after creating the tun

device for the VM
- O

MODEL hardware that will emulate this network interface - O

Example, a VM with two NIC attached to two different networks, one make use of the Virtual Network
Manager lease feature:

For more information on setting up virtual networks please check the Managing Virtual Networks guide.

2.1.5 I/O Devices Section

The following I/O interfaces can be defined for a VM:
Note the hypervisor column states that the attribute is Optional, Mandatory, or - not supported

for that hypervisor

Attribute Description XEN KVM

INPUT Define input devices, available sub-
attributes: - TYPE: values are mouse

or tablet - BUS: values are usb, ps2 or
xen

- O

GRAPHICS Wether the VM should export its graph-
ical display and how, available sub-
attributes: - TYPE: values: vnc sdl -
LISTEN: IP to listen on. - PORT: port
for the VNC server - PASSWD: pass-
word for the VNC server - KEYMAP:
keyboard configuration locale to use in
the VNC display

O O

Example:
Note For KVM hypervisor the port number is a real one, not the VNC port. So for VNC port 0 you

should specify 5900, for port 1 is 5901 and so on.

2.1.6 Placement Section

The following attributes placement constraints and preferences for the VM:
Note the hypervisor column states that the attribute is Optional, Mandatory, or - not supported

for that hypervisor

Attribute Description XEN KVM

REQUIREMENTS Boolean expression that rules out provi-
sioning hosts from list of machines suit-
able to run this VM.

O O

RANK This field sets which attribute will be
used to sort the suitable hosts for this
VM. Basically, it defines which hosts are
more suitable than others.

O O

©C12G Labs S.L. 12/36 Rev20100611

Example:

2.1.7 Context Section

Context information is passed to the Virtual Machine via an ISO3 mounted as a partition. This infor-
mation can be defined in the VM template in the optional section called Context, with the following
attributes:

Attribute Description
VARIABLE Variables that store values related to this virtual

machine or others. The name of the variable is
arbitrary (in the example, we use hostname).

FILES space-separated list of paths to include in context
device.

TARGET device to attach the context ISO3.

The values referred to by VARIABLE can be:

� $<template variable>: any single value variable of the VM template, like for example $NAME

� $<template variable>[<attribute>]: Any single value contained in a multiple value variable in
the VM template, like for example $NIC[IP].

� $<template variable>[<attribute>, <attribute2>=<value2>]: Any single value contained
in a multiple value variable in the VM template, setting one atribute to discern between multiple
variables called the same way, like for example $NIC[IP, NETWORK=”Private LAN”].

� $<vm id>.<context var>: Any $<template variable> (expressed in any of the previous ways)
pertaining to VM with id=<vm id>, like for example $4.$NAME, referring to the NAME of the
VM with ID=4.

Example:

Requirement Expression Syntax

The syntax of the requirement expressions is defined as:

=’ NUMBER | VARIABLE ’>’ NUMBER | VARIABLE ’<’ NUMBER | VARIABLE ’=’ STRING | VARIABLE

’!

Each expression is evaluated to 1 (TRUE) or 0 (FALSE). Only those hosts for which the requirement
expression is evaluated to TRUE will be considered to run the VM.

Logical operators work as expected (less ’<’, greater ’>’, ’&’ AND, ’|’ OR, ’ !’ NOT), ’=’ means
equals with numbers (floats and integers). When you use ’=’ operator with strings, it performs a shell
wildcard pattern matching.

Any variable defined by the Information Manager driver can be used in the requirements. Check
the configuration guide to find out how to extend the information model

There are some predefined variables that can be used: HOSTNAME, TOTALCPU, TOTALMEMORY, FREEMEM-
ORY, FREECPU, USEDMEMORY, USEDCPU, HYPERVISOR

If using OpenNebula’s default match-making scheduler in a hypervisor heterogeneous environment,
it is a good idea to add an extra line like the following to the VM template to ensure its placement in a
VMWare hypervisor enabled machine.

Examples:

3International Organization for Standardization

©C12G Labs S.L. 13/36 Rev20100611

Rank Expression Syntax

The syntax of the rank expressions is defined as:
Rank expressions are evaluated using each host information. ’+’, ’-’, ’*’, ’/’ and ’-’ are arithmetic

operators. The rank expression is calculated using floating point arithmetics, and then round to an integer
value.

The rank expression is evaluated for each host, those hosts with a higher rank are used first to
start the VM. The rank policy must be implemented by the scheduler. Check the configuration guide to
configure the scheduler.

Similar to the requirements attribute, any number (integer or float) attribute defined for the host
can be used in the rank attribute

Examples:

2.1.8 RAW Section

This optional section of the VM template is used whenever the need to pass special attributes to the
underlying hypervisor arises. Anything placed in the data attribute gets passed straight to the hypervisor,
unmodified.

RAW Sub-Attribute Description XEN KVM
TYPE Possible values are: kvm,xen O O
DATA Raw data to be passed directly to the hypervisor O O

Example

2.2 Command Line Interface

OpenNebula provides four commands to interact with the system:

� onevm: to submit, control and monitor virtual machines

� onehost: to add, delete and monitor hosts

� onevnet: to add, delete and monitor virtual networks

� oneuser: to add, delete and monitor users

These commands share common options described below:

� -l, list x,y,z: Selects columns to display with list command.

� list-columns: Information about the columns available to display, order or filter.

� -o, order x,y,z: Order by these columns, column starting with - means decreasing order.

� -f, filter x,y,z: Filter data. An array is specified with column=value pairs.

� -d, delay seconds: Sets the delay in seconds for top command.

� -h, help: Shows help information.

� version: Shows version and copyright information.

� -v, verbose: Tells more information if the command is successful

� -x, xml: Returns xml instead of human readable text

Number ranges can also be specified this way:

� [<start>-<end>]: generates numbers from start to end

� [<start>+<count>]: generates a range that starts with the number provided and has count
number of elements

©C12G Labs S.L. 14/36 Rev20100611

If start first number is 0 then it will pad the numbers generated with 0 to the same size as the last
element in the range.

Example:

[9-11]: 9 10 11

[09-11]: 09 10 11

[8+3]: 8 9 10

[08+3]: 08 09 10

2.2.1 onevm

This command enables the user to manage virtual machines in the ONE server. The user can allocate,
deploy, migrate, suspend, resume and shutdown a virtual machine with the functionality present in
onevm.

onevm [<options>] <command> [<parameters>]

Command Summary

create
Submits a new virtual machine, adding it to the ONE VM pool. It requires the filename of the VM

template.

onevm create <template>

deploy
Starts a previously submitted VM on a specific host

onevm deploy <vm_id> <host_id>

shutdown
Shutdown an already deployed VM

onevm shutdown <vm_id>

livemigrate
Migrates a running VM to another host without downtime

onevm livemigrate <vm_id> <host_id>

migrate
Saves a running VM and starts it again in the specified host

onevm migrate <vm_id> <host_id>

hold
Sets a VM to hold state, scheduler will not deploy it

©C12G Labs S.L. 15/36 Rev20100611

onevm hold <vm_id>

release
Releases a VM from hold state

onevm release <vm_id>

stop
Stops a running VM

onevm stop <vm_id>

suspend
Saves a running VM

onevm suspend <vm_id>

resume
Resumes the execution of a saved VM

onevm resume <vm_id>

delete
Deletes a VM from the pool

onevm delete <vm_id>

restart
Resubmits the VM after failure

onevm restart <vm_id>

list
Shows VMs in the pool

onevm list <filter_flag>

where filter_flag can be

a, all --> all the known VMs

m, mine --> the VMs belonging to the user in ONE_AUTH

uid --> VMs of the user identified by this uid

username --> VMs of the user identified by the username

show
Gets information about a specific VM

©C12G Labs S.L. 16/36 Rev20100611

onevm show <vm_id>

top

Lists VMs continuously

onevm top

history

Gets history from VMs, if no vm id is provided it will list history for all known VMs

onevm history [<vm_id> <vm_id> ...]

Information Columns

ID ONE VM identifier
USER Username of the VM owner
NAME Name of the ONE
STAT Status of the VM
CPU CPU percentage used by the VM
MEM Memory used by the VM
HOSTNAME Host where the VM is being or was run
TIME Time since the submission of the VM (days hours:minutes:seconds)

VM States

pend pending
hold VM on hold (not runnable)
stop stopped
susp suspended
done finished
prol prolog
boot booting
runn running
migr migrating
save saving the VM to disk
epil epilog
shut shutting down
fail failed

2.2.2 onehost

This command enables the user to manage hosts in the Open Nebula server. It provides functionality to
allocate, get information and delete a particular host or to list all the available hosts.

onehost [<options>] <command> [<parameters>]

©C12G Labs S.L. 17/36 Rev20100611

Command Summary

create
Adds a new machine to the pool

onehost create <hostname> <im_mad> <vmm_mad>

im mad and vmm mad as written in oned.conf.
show
Gets info from a single host

onehost show <host_id>

delete
Removes a machine from the pool

onehost delete <host_id>

list
Lists machines in the pool

onehost list

enable
Enables host

onehost enable <host_id>

disable
Disables host

onehost disable <host_id>

top
Lists hosts continuously

onehost top

Information Columns

HID Host ID
NAME Host name
RVM Number of running VMs
TCPU Total CPU (percentage)
FCPU Free CPU (percentage)
ACPU Available CPU (not allocated by VMs)
TMEM Total memory
FMEM Free memory
STAT Host status

©C12G Labs S.L. 18/36 Rev20100611

2.2.3 onevnet

This command enables the user to manage virtual networks in the OpenNebula server. It provides
functionality to create, get information and delete a particular network or to list available and used IP’s.

onevnet <command> [<parameters>]

Command Summary

create
Adds a new virtual network to the pool

onevnet create <network_configuration_file>

show
Gets info from a single virtual network

onevnet show <network_id>

delete
Removes a virtual network

onevnet delete <network_id>

list
Lists virtual networks in the pool

onevnet list <filter_flag>

where filter_flag can be

a, all --> all the known VNs

m, mine --> the VNs belonging to the user in ONE_AUTH

uid --> VNs of the user identified by this uid

username --> VNs of the user identified by the username

Information Columns

NID Network ID
NAME Name of the virtual network
TYPE Type of virtual network (0=ranged, 1=fixed)
BRIDGE Bridge associated to the virtual network
#LEASES Number of leases used from this virtual network

2.2.4 oneuser

This command enables the OpenNebula administrator to manage users, adding, listing and deleting them.

oneuser [<options>] <command> [<parameters>]

©C12G Labs S.L. 19/36 Rev20100611

Command Summary

create
Creates a new user

oneuser create username password

delete
Removes a user

onevnet delete <uid>

list
Lists all the user prenset in OpenNebula

onevnet list

Information Columns

UID User ID
NAME Name of the user
PASSWORD SHA1 encrypted password
ENABLE Whether the user is enabled or not

©C12G Labs S.L. 20/36 Rev20100611

Chapter 3

Programming

3.1 Libvirt API

The OpenNebula libvirt implementation lets you use any libvirt application at a distributed level. In
a nutshell, you’ll be able to use your libvirt XML1 description files and any libvirt tool, like virsh or
virt-manager to connect to OpenNebula. In this way, you can manage and monitor your VMs in a
distributed environment using the current libvirt tools. This is, a whole cluster can be managed as any
other libvirt node.

Figure 3.1:

For example, you can create your domain with virsh create, then OpenNebula will look for a suitable
resource, transfer the VM images and boot your VM using any of the supported hypervisors. The
distributed management is completely transparent to the libvirt application.

1Extensible Markup Language

©C12G Labs S.L. 21/36 Rev20100611

http://virt-manager.et.redhat.com/

3.1.1 Requirements

The OpenNebula driver for libvirt has been incorporated in libvirt main distribution, so in order to use
it you will need in the OpenNebula front-end:

� libvirt >= 0.6.5

� OpenNebula >= 1.2

3.1.2 Configuration

Libvirt needs to be configured (look here for configuration options of libvirt). Afterwards, the libvirtd
deaemon has to be started. Also, the oned daemon has to be up and running.

3.1.3 Checking the installation

To verify the installation of ”ONE driver” for libvirt, execute ”virsh” with the following URI2: ”one:///”
to connect to the local ONE instance. With the installation done and both daemons running (libvirt’s
and OpenNebula’s), you should be able to connect to OpenNebula:

///

3.1.4 Usage Examples

The driver allows libvirt to interact with OpenNebula as a virtualization hypervisor, so you can use libvirt
applications to manage a distributed infrastructure.

Using virsh

The virsh program is the main interface for managing libvirt guest domains.

Connect to the hypervisor ///

Creating and Monitoring a new VM

Resume a suspended Domain

Shutdown Domains

Programming Examples

The following examples illustrate how to use the C API3 >= libvirt-0.6.5 with OpenNebula. This will
allow you to develop applications that interacts with OpenNebula as it was a single hypervisor.

Set connection to OpenNebula

virConnectPtr conn;

conn = virConnectOpen("one:%%///%%");

2Uniform Resource Identifier
3Application Programming Interface

©C12G Labs S.L. 22/36 Rev20100611

http://libvirt.org/remote.html#Remote_libvirtd_configuration

Creating a Domain and getting info

virDomainPtr dom = NULL;

virDomainInfo info;

virDomainCreateLinux(conn,XML_template,NULL);

...

/* Find the domain of the given id */

dom = virDomainLookupByID(conn, id);

/* Get information: */

ret = virDomainGetInfo(dom, &info);

printf("Domain %d CPUs\n",info.nrVirtCpu);

printf("Domains %d Memory\n", id, info.memory);

printf("Domains %s Status\n", id, info.status);

Suspending a Virtual Machine

virDomainPtr dom;

virDomainInfo ret;

dom = virDomainLookupByName(conn, vm_name);

ret = virDomainGetInfo(dom, &info);

/* Check if the current State allows to shutdown the VM */

if(info.state == VIR_DOMAIN_RUNNING)

virDomainShutdown(dom);

else

fprintf(stderr, "Failed to Shutdown %s\n", vm_name);

XML Domain Definition

Libvirt make use of XML1 format to represent domains, there are some limitations on the attributes
that may be specified when interfacing OpenNebula. The following list details the attributes and options
supported by the libvirt driver:

General Metadata

� Name

OS Booting The booting method should be configured using a ”Direct kernel boot” method, as:

<os>

<type>hvm</type>

<kernel>/boot/vmlinuz-2.6.24-17-xen</kernel>

<initrd>/boot/initrd.img-2.6.24-17-xen</initrd>

<cmdline></cmdline>

<root>sda1</root>

</os>

The following options can be define within an os section

� type, should be set to hvm

� kernel

� initrd

� root

� cmdline

©C12G Labs S.L. 23/36 Rev20100611

Basic Resources

� memory

� vcpu

3.1.5 Devices

Sample configuration of a VM disk

<disk type=’file’ device=’disk’>

<source file=’/images/sgehosts/01/swap.img’/>

<target dev=’sda2’/>

</disk>

Attributes for a disk section:

� disk: the type option should be set to file and device to disk

� source: option file is supported

� target: the option bus is no supported

Network The network of the VMs should be configured following the semantics of Bridged networking,
or Virtual Network for example:

...

<interface type=’bridge’>

<source bridge=.../>

<target dev=.../>

<mac address=’00:16:3e:01:01:01’/>

</interface>

...

...

<interface type=’network’>

<source network=’mynetwork’/>

</interface>

...

The following options can be define within an interface section:

� type: should be set to bridge or network

� source : bridge,network

� target: optional at bridge configuration, not used at network

� mac optional at bridge configuration, not used at network

©C12G Labs S.L. 24/36 Rev20100611

XML description example

Following, there is an example ”libvirt XML1 Description” file defining a guest Domain in OpenNebula:

<domain type=’one’>

<name>vm01</name>

<memory>32768</memory>

<vcpu>1</vcpu>

<os>

<type>hvm</type>

<cmdline></cmdline>

<kernel>/boot/vmlinuz-2.6.24-17-xen</kernel>

<initrd>/boot/initrd.img-2.6.24-17-xen</initrd>

<root>sda1</root>

</os>

<devices>

<disk type=’file’ device=’disk’>

<source file=’/images/sgehosts/01/disk.img’/>

<target dev=’sda1’/>

</disk>

<disk type=’file’ device=’disk’>

<source file=’/images/sgehosts/01/swap.img’/>

<target dev=’sda2’/>

</disk>

<interface type=’bridge’>

<source bridge=’eth0’/>

<target dev=’tap0’/>

<mac address=’00:16:3e:01:01:01’/>

</interface>

</devices>

</domain>

Driver Support

These are the main functions to manage VM supported by ONE driver:

� virDomainCreate

� virDomainCreateLinux

� virDomainGetInfo

� virDomainSuspend

� virDomainResume

� virDomainShutDown

Libvirt API3 details can be scouted here.

Libvirt calls supported on the OpenNebula driver are listed in the table below:

©C12G Labs S.L. 25/36 Rev20100611

http://libvirt.org/html/libvirt-libvirt.html

API3 Call API3 call
virClose virDomainGetConnect
virConnectGetVersion virDomainGetUUID
virConnectNumOfDefinedDomains virDomainLookupByName
virDomainCreate virDomainSuspend
virDomainDestroy virInitialize
virDomainGetAutostart virConnectGetURI
virDomainGetInfo virConnectListDomains
virDomainGetName virConnectOpen
virDomainGetVcpus virDomainDefineXML
virDomainLookupByID virDomainFree
virDomainLookupByUUIDString virDomainGetID
virDomainShutdown virDomainGetOSType
virGetVersion virDomainGetUUIDString
virConnectListDefinedDomains virDomainLookupByUUID
virConnectNumOfDomains virDomainResume
virDomainCreateLinux virDomainUndefine

3.2 EC2 Query API

The EC2 Query API offers the functionality exposed by Amazon EC2: upload images, register them,
run, monitor and terminate instances, etc. In short, Query requests are HTTP4 or HTTPS requests that
use the HTTP4 verb GET or POST and a Query parameter.

OpenNebula implements a subset of the EC2 Query interface, enabling the creation of public clouds
managed by OpenNebula. In this first release of the API3 implementation, the methods implemented
are:

� upload image: Uploads an image to the repository manager

� register image: Registers an image (previously uploaded in the repository manager) in order to
be launched, check this link for the method description.

� describe images: Lists all registered images belonging to one particular user.

* run instances: Runs an instance of a particular image (that needs to be referenced), check this link for the method description

*

**[[http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-DescribeInstances.html|d

instances]]**: Outputs a list of launched images belonging to one particular user,

[[http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-RunInstances.html|check

this link for the method description]].

� terminate instances: Shutdown a virtual machine(or cancel, depending on its state), check this link for the method

3.2.1 User Account Configuration

An account is needed in order to use the OpenNebula cloud. The cloud administrator will be responsible
for assigning these accounts, which have a one to one correspondence with OpenNebula accounts, so all
the cloud administrator has to do is check the configuration guide to setup accounts, and automatically
the OpenNebula cloud account will be created.

In order to use such an account, the end user can make use of clients programmed to access the
services described in the previous section. For this, she has to set up his environment, particularly the
following aspects:

4Hyper Text Transfer Protocol

©C12G Labs S.L. 26/36 Rev20100611

http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?using-query-api.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/index.html?ApiReference-query-RegisterImage.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/index.html?ApiReference-query-RegisterImage.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-RunInstances.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-RunInstances.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-TerminateInstances.html
http://docs.amazonwebservices.com/AWSEC2/2009-04-04/APIReference/ApiReference-query-TerminateInstances.html

� Authentication: This can be achieved in three different ways, here listed in order of priority (i.e.
values specified in the argument line supersede environmental variables)

– Using the commands arguments. All the commands accept an Access Key (as the Open-
Nebula username) and a Secret Key (as the OpenNebula password)

– Using EC2 ACCESS KEY and EC2 SECRET KEY environment variables the same way
as the arguments

– If none of the above is available, the ONE AUTH variable will be checked for authentication
(with the same used for OpenNebula CLI).

� Server location: The command need to know where the OpenNebula cloud service is running.
That information needs to be stored within the EC2 URL5 environment variable (in the form of
a http URL5, including the port if it is not the standard 80).

The EC2_URL5 has to use the FQDN of the EC2-Query Server

3.2.2 Hello Cloud!

Lets take a walk through a typical usage scenario. In this brief scenario it will be shown how to upload
an image to the OpenNebula image repository, how to register it in the OpenNebula cloud and perform
operations upon it.

� upload image

Assuming we have a working Gentoo installation residing in an .img file, we can upload it into the
OpenNebula cloud using the econe-upload command:

The user should take note of this ImageId, as it will be needed to register the image.

� register image

The next step should be registering the image to enable its instantiation. We can do this with the
econe-register command:

� describe images

We will need the ImageId to launch the image, so in case we forgotten we can list registered images
using the econe-describe-images command:

* run instance
Once we recall the ImageId, we will need to use the econe-run-instances command to launch an

Virtual Machine instance of our image:
We will need the InstanceId to monitor and shutdown our instance, so we better write down that

15.

� describe instances

If we have too many instances launched and we don’t remember everyone of them, we can ask econe-
describe-instances to show us which instances we have submitted.

We can see that the instances with Id 15 has been launched, but it is still pending, i.e., it still needs
to be deployed into a physical host. If we try the same command again after a short while, we should be
seeing it running as in the following excerpt:

* terminate instances
After we put the Virtual Machine to a good use, it is time to shut it down to make space for other Vir-

tual Machines (and, presumably, to stop being billed for it). For that we can use the econe-terminate-
instances passing to it as an argument the InstanceId that identifies our Virtual Machine:

You can obtain more information on how to use the above commands accessing their Usage help
passing them the -h flag

5Uniform Resource Locator

©C12G Labs S.L. 27/36 Rev20100611

3.3 OpenNebula OFG OCCI API

3.3.1 Resources

The OpenNebula OCCI API3 is a RESTful service to create, control and monitor cloud resources based
on the latest draft of the OGF OCCI API specification. There are two types of resources that resemble
the basic entities managed by the OpenNebula system, namely:

� Pool Resources (PR): Represents a collection of elements owned by a given user. In particular
three pool resources are defined: COMPUTES, NETWORKS and STORAGE.

� Entry Resources (ER): Represents a single entry within a given collection: COMPUTE, NET-
WORK and DISK.

A COMPUTE entry resource can be linked to one or more DISK or NETWORK resources.

3.3.2 Methods

The methods associated with each resource type are as follows:

� Pool Resources (PR)

– GET: to list all the entry resources in that pool resource owned by the user

– POST: to create a new entry resource

� Entry Resources (ER)

– GET: to list the information associated with that resource

– PUT: to update the resource (only supported by the COMPUTE resource)

– DELETE: to delete the resource

Figure 3.2:

3.3.3 Data Schema (XML Format)

This section describes the XML1 format used to represent COMPUTE, NETWORK and DISK resources; as well
as the collection of them (Pool Resources, PRs).

©C12G Labs S.L. 28/36 Rev20100611

http://forge.ogf.org/sf/go/doc15731
http://www.occi-wg.org

The Pool Resources

The root element required for all the PRs is named after the pool name, eg. COMPUTES, NETWORKS or
STORAGE (note that XML1 tags are upper case). No attributes can be defined for the root element.

Each one of ERs in the pool are described by an element (e.g. COMPUTE, NETWORK or DISK) with one
attribute:

� href, a URI2 for the ER

Example:

1 <COMPUTES>
2 <COMPUTE hre f=”ht tp : //www. opennebula . org /compute/234 ”>
3 <COMPUTE hre f=”ht tp : //www. opennebula . org /compute/432 ”>
4 <COMPUTE hre f=”ht tp : //www. opennebula . org /compute/123 ”>
5 </COMPUTES>

The Network Resource

The NETWORK element defines a virtual network that interconnects those COMPUTES with a network interface
card attached to that network. The traffic of each network is isolated from any other network, so it
constitutes a broadcasting domain.

The following elements can be defined for a NETWORK:

� ID, the uuid of the network

� NAME, describing the network

� ADDRESS, of the network

� SIZE, of the network, defaults to C

Example:

1 <NETWORK>

2 <ID>123</ID>

3 <NAME>BlueNetwork</NAME>
4 <ADDRESS>192 . 1 68 . 0 . 1</ADDRESS>
5 <SIZE>C</SIZE>

6 </NETWORK>

The Disk Resource

The DISK element defines a virtual disk that supports a VM block device. The following elements can be
defined:

� ID, the uuid of the image

� NAME, describing the image

� SIZE, of the image in MBs

� URL5, pointer to the original image

Example:

1 <DISK>

2 <ID>123</ID>

3 <NAME>Ubuntu 9 .04 LAMP</NAME>
4 <SIZE>2048</SIZE>

5 <URL> f i l e : /// images/ubuntu/ jaunty . img</URL>
6 </DISK>

©C12G Labs S.L. 29/36 Rev20100611

The Compute Resource

The COMPUTE element defines a virtual machine by specifying its basic configuration attributes such as
NIC or DISK. The following elements can be defined:

� ID, the uuid of the virtual machine.

� NAME, describing the virtual machine.

� TYPE, a COMPUTE type specifies a CPU and memory capacity, valid types are small, medium and
large.

� STATE, the state of the COMPUTE. This can be changed to

– stopped

– suspended

– resume

– cancel

– shutdown

– done

� DISKS, the block devices attached to the virtual machine. The following devices can be specified:

– DISK, a block device supported by a previously registered image. The id attribute specifies the
image, dev the device to attach the image to.

– SWAP, a swap device attached to the specified device (dev) with the given size (in MBs).

– FS, a plain filesystem attached to the specified device (dev) with the given size (in MBs) and
format (ext3 and ext2).

� NICS, the network interfaces, defined with a list of NIC elements. Each NIC can have the following
attributes:

– network, the UUID of the network to bind the interface. Use 0 to make this interface attached
to the internet.

– ip, ask for a given IP of the network.

Example:
1 <COMPUTE>
2 <ID>123AF</ID>

3 <NAME>Web Server</NAME>
4 <INSTANCE TYPE>smal l</INSTANCE TYPE>

5 <STATE>running</STATE>

6 <DISKS>
7 <DISK image=”234 ” dev=”sda1 ”/>
8 <SWAP s i z e=”1024 ” dev=”sda2 ”/>
9 <FS s i z e=”1024 ” format=”ext3 ” dev=”sda3 ”/>

10 </DISKS>
11 <NETWORK>

12 <NIC network=”4567 f ” ip=”19 . 1 2 . 1 . 1 ”/>
13 <NIC network=”0 ”/>
14 </NETWORK>

15 </COMPUTE>

3.3.4 Authentication & Authorization

User authentication will be HTTP Basic access authentication to comply with REST philosophy. Autho-
rization will be handled by OpenNebula’s user management module, that currently works as:

� There are normal users and one privilege user (known as oneadmin)

� All users can access retrieve information of all PRs

� All users can perform operations over all PRs

� Normal users can perform operations over their ERs, but no over other users’

� Privilege user oneadmin can perform operations over all ERs

©C12G Labs S.L. 30/36 Rev20100611

http://tools.ietf.org/html/rfc1945#section-11

3.3.5 HTTP Headers

The following headers are compulsory:

� Content-Length: The size of the Entity Body in octets

� Content-Type: application/xml

Uploading images needs HTTP4 multi part support, and also the following header

� Content-Type: multipart/form-data

3.3.6 Return Codes

The OpenNebula Cloud API3 uses the following subset of HTTP4 Status codes:

� 200 OK : The request has succeeded. The information returned with the response is dependent
on the method used in the request, as follows:

– GET an entity corresponding to the requested resource is sent in the response

– POST an entity containing the result of the action

� 201 Created : Request was successful and a new resource has being created

� 202 Accepted : The request has been accepted for processing, but the processing has not been
completed

� 204 No Content : The request has been accepted for processing, but no info in the response

� 400 Bad Request : Malformed syntax

� 401 Unauthorized : Bad authentication

� 403 Forbidden : Bad authorization

� 404 Not Found : Resource not found

� 500 Internal Server Error : The server encountered an unexpected condition which prevented
it from fulfilling the request.

� 501 Not Implemented : The functionality requested is not supported

The methods specified below are described without taking into account 4xx (can be inferred from autho-
rization information in section above) and 5xx errors (which are method independent). HTTP4 verbs
not defined for a particular entity will return a 501 Not Implemented.

3.3.7 Pool Resource Methods

Computes

� Base URL5 : http://www.opennebula.org/compute

Networks

� Base URL5 : http://www.opennebula.org/network

©C12G Labs S.L. 31/36 Rev20100611

http://www.opennebula.org/compute
http://www.opennebula.org/network

Storage

� Base URL5 : http://www.opennebula.org/storage

All the above resources share the same HTTP4 verb semantics:

Method Meaning / Entity Body Response
GET Request for the contents of the

pool
200 OK: An XML1 representa-
tion of the pool in the http body

POST Request for the creation of an ER.
An XML1 representation of a VM
without the ID element should be
passed in the http body

201 Created: An XML1 repre-
sentation of a ER of type COM-
PUTE with the ID

3.3.8 Entity Resource Methods

Network

� Base URL5 : http://www.opennebula.org/network/<net id>

Method Meaning / Entity Body Response
GET Request the representation of

the network resource identified
by <net id>

200 OK : An XML1 represen-
tation of the network in the http
body

DELETE Deletes the Network resource
identified by <net-id>

200 OK: The Network has been
successfully deleted

Storage

� Base URL5 : http://www.opennebula.org/storage/<storage id>

Method Meaning / Entity Body Response
GET Request the representation of

the image resource identified by
<storage id>

200 OK : An XML1 represen-
tation of the image in the http
body

DELETE Deletes the Image resource iden-
tified by <storage id>

200 OK : The image has been
successfully deleted

Compute

� Base URL5 : http://www.opennebula.org/compute/<compute id>

Method Meaning / Entity Body Response
GET Request the representation of

the Compute resource identified
by <compute id>

200 OK : An XML1 representa-
tion of the Compute in the http
body

PUT Update request for a Compute
identified by <compute id>

202 Accepted : The update
request is being process, polling
required to confirm update

DELETE Deletes the Compute resource
identified by <compute id>

200 OK : The Compute has
been successfully deleted

©C12G Labs S.L. 32/36 Rev20100611

http://www.opennebula.org/storage
http://www.opennebula.org/network/
http://www.opennebula.org/storage/
http://www.opennebula.org/compute/

3.3.9 Implementation Notes

Authentication

It is recommended that the server-client communication is performed over HTTPS to avoid sending user
authentication information in plain text.

Notifications

HTTP4 protocol does not provide means for notification, so this API3 relies on asynchronous polling to
find whether a VM update is successful or not.

©C12G Labs S.L. 33/36 Rev20100611

Chapter 4

Internals

4.1 Architecture

The OpenNebula internal architecture can be divided into three layers:

� Tools, management tools developed using the interfaces provided by the OpenNebula Core.

� Core, the main virtual machine, storage, virtual network and host management components.

� Drivers, to plug-in different virtualization, storage and monitoring technologies and Cloud services
into the core.

Figure 4.1: OpenNebula Architecture

4.1.1 Tools

This layer contains tools distributed with OpenNebula, such as the CLI, the scheduler, the libvirt API1

implementation or the Cloud RESTful interfaces, and also 3rd party tools that can be easily created
using the XML2-RPC3 interface or the new OpenNebula Cloud API1.

Command Line Interface

A CLI for infrastructure administrators and users is provided with OpenNebula to manually manipulate
the virtual infrastructure. For more information about the CLI (command line interface) go here.

1Application Programming Interface
2Extensible Markup Language
3Remote Procedure Call

©C12G Labs S.L. 34/36 Rev20100611

Scheduler

The Scheduler is an independent entity in the OpenNebula architecture, so it can be easily tailored or
changed since it is decoupled from the rest of the components. It uses the XML2-RPC3 interface provided
by OpenNebula to invoke actions on virtual machines. The scheduler distributed with OpenNebula allows
the definition of several resource and load aware policies.

The Haizea lease manager can also be used as a scheduling module in OpenNebula. Haizea allows
OpenNebula to support advance reservation of resources and queuing of best effort requests (more gener-
ally, it allows you to lease your resources as VMs, with a variety of lease terms). The Haizea documentation
includes a guide on how to use OpenNebula and Haizea to manage VMs on a cluster

4.1.2 OpenNebula Core

The core consists of a set of components to control and monitor virtual machines, virtual networks,
storage and hosts. The core performs its actions (e.g. monitor a host, or cancel a VM) by invoking a
suitable driver. The main functional components of OpenNebula core are:

� Request Manager, to handle client requests

� Virtual Machine Manager, to manage and monitor of VMs

� Transfer Manager, to manage VM images

� Virtual Network Manager, to manage virtual networks

� Host Manager, to manage and monitor physical resources

� Database, persistent storage for ONE data structures

Request Manager

The Request Manager exposes a XML2-RPC3 Interface, and then depending on the invoked method
a given component is called internally. The XML2-RPC3 decouples most of the functionality in the
OpenNebula core, from external components i.e. the Scheduler.

Virtual Machine Manager

This component is responsible for the management and monitoring of VMs. The operations of the VM
Manager are abstracted from the underlying hypervisor the use of plugable drivers.

Transfer Manager

The Transfer Manager (TM) is in charge of all the files transfers needed for the correct deployment of
virtual machines. This includes the transfer of images to the cluster node selected for running the images’
virtual machine, the transfer of the image from the cluster node to the image repository, the transfer
of checkpoint files between cluster nodes for cold migrations or to the cluster front-end when the virtual
machine is stopped, etc.

Virtual Network Manager

The Virtual Network Manager (VNM) is responsible for the handling of IP and MAC addresses, allowing
the creation of virtual networks by keeping track of leases (a set form by one IP and one MAC valid on
a particular network) and their association with virtual machines and the physical bridges the VM are
using.

Host Manager

This component manages and monitors the physical hosts. Monitor and management actions are per-
formed also through a suitable driver. The host monitoring infrastructure is flexible and can be extended
to include any host attribute.

©C12G Labs S.L. 35/36 Rev20100611

http://haizea.cs.uchicago.edu/
http://haizea.cs.uchicago.edu

Database

A persistent generic pool based on a SQLite3 backend is the core component of the OpenNebula internal
data structures. This component provides OpenNebula with the scalability and reliability (in case of
failure the state of OpenNebula is automatically recovered) needed in the management VMs.

Note that this information can be accessed through the SQLite3 interface to develop custom accounting
applications.

4.1.3 Drivers

OpenNebula has a set of pluggable modules to interact with specific middleware (e.g. virtualization
hypervisor, cloud services, file transfer mechanisms or information services), these adaptors are called
Drivers.

©C12G Labs S.L. 36/36 Rev20100611

	Configuration
	Daemon Configuration File
	Daemon Configuration Attributes
	Information Drivers
	Transfer Drivers
	Virtualization Drivers
	Hook System
	Example Configuration File

	Usage
	Virtual Machine Definition File
	Capacity Section
	OS and Boot Options Section
	Disks Section
	Network Section
	I/O Devices Section
	Placement Section
	Context Section
	RAW Section

	Command Line Interface
	onevm
	onehost
	onevnet
	oneuser

	Programming
	Libvirt API
	Requirements
	Configuration
	Checking the installation
	Usage Examples
	Devices

	EC2 Query API
	User Account Configuration
	Hello Cloud!

	OpenNebula OFG OCCI API
	Resources
	Methods
	Data Schema (XML Format)
	Authentication & Authorization
	HTTP Headers
	Return Codes
	Pool Resource Methods
	Entity Resource Methods
	Implementation Notes

	Internals
	Architecture
	Tools
	OpenNebula Core
	Drivers

