3th June 2010 1st European Summit on the Future Internet Luxembourg

Enabling Technologies for Cloud Computing

Ignacio M. Llorente

dsa-research.org

Distributed Systems Architecture Research Group Universidad Complutense de Madrid

Position in the Cloud Ecosystem

Enabling Technologies for Cloud Computing

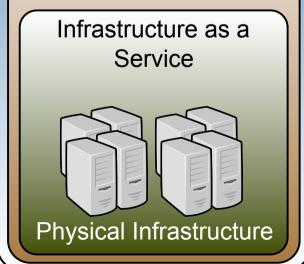
Software as a Service

What

Who

On-demand access to any application

End-user (does not care about hw or sw)


facebook.

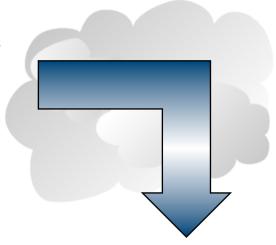
Platform as a Service

Platform for building and delivering web applications

Developer (no managing of the underlying hw & swlayers)

OpenNebula.org

Innovative open, flexible and scalable technology to configure your own IT resources into a laaS cloud



Transforming your IT Infrastructure into a Cloud

Enabling Technologies for Cloud Computing

Commercial Cloud Provider

- Flexible and elastic capacity to meet dynamic demands of service
- Ubiquitous network access
- Pay per use and on-demand access

Building your Own Cloud

- Optimize and Simplify Internal Operations
 - Centralized management of all servers and services with dynamic resizing of infrastructure and dynamic allocation of capacity
 - Higher utilization and operational saving of existing resources with server consolidation and removal of application silos
 - Lower infrastructure expenses with combination of local and remote Cloud resources
- Support new IT, scientific, or business Cloud services

Deployment Models

Enabling Technologies for Cloud Computing

Model	Definition	Examples of Deployment
Private	Infrastructure is owned by a single organization and made available only to the organization	 Optimize and simplify internal operation SaaS/PaaS support IT consolidation within large organizations (Government Clouds, University Clouds)
Public	Infrastructure is owned by a single organization and made available to other organizations	 Commercial cloud providers Community public clouds by ICT service centers to enable scientific and educational projects to experiment with cloud computing Special purpose clouds with dedicated capabilities (Science Clouds, HPC Clouds) Regional clouds to address regulatory or latency issues
Hybrid	Infrastructure is a composition of two or more clouds	 Cloudbursting to address peak demands Cloud Federation to share infrastructure with partners Cloud Aggregation to provide a larger resource infrastructure

Designing a Cloud Driven by Requirements

Enabling Technologies for Cloud Computing

Requirements from Usage and Deployment Scenarios

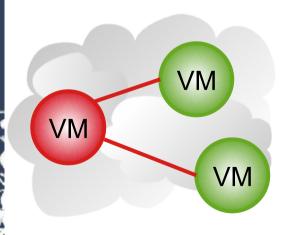
- Users: Functionality exposed and workload profile
- Managers: Flexible, efficient and scalable management of the Cloud
- Business: Hybrid cloud computing and federation
- Integrators: Open architecture, interfaces and code

"One solution does not fit all requirements and constraints, a properly architectured solution should fully align with your Cloud strategy"

Constraints from Existing Infrastructure and Processes in the Organization

Building a Cloud with OpenNebula

Enabling Technologies for Cloud Computing


Innovations

Technology **challenges** in cloud computing management from **business use cases**

Open-source Toolkit

OpenNebula v1.4

- Open and flexible tool to fit into any datacenter and integrate with any ecosystem component
- Open-source released under Apache v2.0, and distributed in Ubuntu
- Most advanced solution to build private, public, federated and hybrid clouds
- Based on standards avoid vendor lock-in and to enable interoperability
- Efficient and scalable management of the cloud

OpenNebula Ecosystem

Enabling Technologies for Cloud Computing

Open Community for Cloud Computing

- Haizea Lease Manager (University of Chicago): Advance reservation of capacity and queuing of best effort requests
- Cloud Management Console (SARA Computing and Networking Services): Web interface for OpenNebula
- Virtual Cluster Tool (CRS4 Distributed Computing Group): Atomic virtual cluster management with versioning and multiple transport protocols.
- DeltaCloud Driver (DSA-Research@UCM)
- RESERVOIR Policy Engine (IBM Haifa/Elsag Datamat): Policy-driven probabilistic admission control and dynamic placement optimization to satisfy site level management policies
- VM Consolidation Scheduler (DSA-Research@UCM): Periodic re-placement of VMs for server consolidation and suspension/resume of physical resources
- Claudia (Telefonica I+D): SLA-driven automatic service management
- Under Development: SUN Cloud API, vCloud API, VirtualBox plugin, dashboard for infrastructure management, new schedulers, SLA and security framework, Grid service manager, LVM and SAN support,...

Experiences

Enabling Technologies for Cloud Computing

Deployment Cases

- A team at Clemson University and CERN has used OpenNebula to deploy thousands of VMs on 400 hosts (3,200 cores) running Xen
- OpenNebula was integrated in internal network and configuration management
- Contributed drivers for using LVM based disk images

- The Dgrid Resource Center Ruhr (DGRZR) has used OpenNebula to manage 248 Blades with a total of 1,984 cores.
- OpenNebula is used to support the execution of a virtualized Grid site in D-Grid and EGEE

- SARA High Performance Computing Center uses OpenNebula in its new HPC Cloud service on 128 cores across 16servers with KVM
- OpenNebula is used to support the execution of virtual clusters and HPC applications
- Authors of the OpenNebula Management Console

Innovative Projects

Enabling Technologies for Cloud Computing

European Projects on Cloud Computing Infrastructures

EU grant agreement 215605 Service and Sw Architectures and Infrastructures (2008-2011)

Resources and Services Virtualization without Barriers

 Open source technology to enable deployment and management of complex IT services across different administrative domains

Proposal in negotiation e-Infrastructure (2010-2012)

Enhancing Grid Infrastructures with Cloud Computing

- Simplify and optimize its use and operation, providing a more flexible, dynamic computing environment for scientists.
- Enhance existing computing infrastructures with "laaS" paradigms

Proposal in negotiation

New Infrastructure Paradigms
and Experimental Facilities
(2010-2013)

Building Service Testbeds on FIRE

 Design, build and operate a multi-site cloud-based facility to support research across applications, services and systems targeting services research community on Future Internet

Commercial Support by C12G.org

Enabling Technologies for Cloud Computing

OpenNebula Enterprise Edition >

The Enterprise-grade Cloud Management Tool to Build your Cloud Solution, Product or Service

Thanks

Funding Agencies

- European Commission: RESERVOIR 2008-2011, EU agreement 215605
- Ministry Science&Innovation: HPCcloud 2010-2012, MICINN TIN2009-07146
- Community of Madrid: MEADIANET 2010-2013 CAM S2009/TIC-1468

Other Sponsors

 C12G Labs dedicates an amount of its own engineering resources to support and develop OpenNebula

The OpenNebula Community

- The OpenNebula Team: Ignacio M. Llorente, Ruben S. Montero, Tino Vazquez, Javier Fontan, Jaime Melis, Carlos Martín, Rafael Moreno, Daniel Molina, and Borja Sotomayor
- ... and many value community contributors from several organizations

Your support and contribution are very much appreciated!

More Information

More info, downloads, mailing lists at

Research References

- B. Rochwerger, J. Caceres, R.S. Montero, D. Breitgand, E. Elmroth, A. Galis, E. Levy, I.M. Llorente, K. Nagin, Y. Wolfsthal, "The RESERVOIR Model and Architecture for Open Federated Cloud Computing", IBM Systems Journal, Vol. 53, No. 4. (2009)
- B. Sotomayor, R. S. Montero, I. M. Llorente and I. Foster, "Virtual Infrastructure Management in Private and Hybrid Clouds", IEEE Internet Computing, September/ October 2009 (vol. 13 no. 5)

