**Open Grid Forum 28** 

March 15-18, 2010 Munich, Germany

# Using the OGF OCCI Interface on OpenNebula/RESERVOIR

**Constantino Vázquez Blanco** 

## dsa-research.org

Distributed Systems Architecture Research Group Universidad Complutense de Madrid











## Contents

- dsa-research.org
- **OpenNebula** Overview
- Cloud Taxonomy
- The RESERVOIR Project
- OGF OCCI OpenNebula Implementation
- Hands On







What is OpenNebula?

## **Open-Source Toolkit for Building Cloud Infrastructures**

- Orchestrates storage, network and virtualization technologies to enable the dynamic placement of multi-tier services on distributed infrastructures, combining both data center resources and remote cloud resources, according to allocation policies
- Provides internal and Cloud administration and user interfaces for the full management of the laaS Cloud platform



Private Cloud: Management of virtual infrastructure in the datacenter or cluster

Hybrid Cloud : Combination of private with Cloud resources

Public Cloud: Cloud interfaces for the full management of services



#### Benefits

### For the Infrastructure Manager

- Centralized management of VM workload and distributed infrastructures
- Support for VM placement policies: balance of workload, server consolidation...
- Dynamic resizing of the infrastructure
- Dynamic partition and isolation of clusters
- Dynamic scaling of private infrastructure to meet fluctuating demands
- Lower infrastructure expenses combining local and remote Cloud resources

### For the Infrastructure User

- Faster delivery and scalability of services
- Support for heterogeneous execution environments
- Full control of the lifecycle of virtualized services management





Benefits

### For System Integrators

- Fits into any existing data center, due to its open, flexible and extensible interfaces, architecture and components
- Builds any type of Cloud deployment
- Open source software, Apache license
- Seamless integration with any product and service in the cloud ecosystem and management tool in the data center, such as
  - cloud providers
  - VM managers
  - virtual image managers
  - service managers
  - management tools
  - schedulers



#### Ecosystem

#### **Related Technologies**

- Haizea (Uchicago): Open-source VM-based lease management architecture
- Several tools for service elasticity management, VM scheduling... being developed around OpeNebula in RESERVOIR (IBM, Telefonica I+D,...)

### Infrastructure Technology

- KVM Management Tools
- Xen Community Project

### **Cloud Services**

- Technology Partner of ElasticHosts
- Project in the Amazon EC2 Solutions Catalog

### **Cloud Solutions and Tools**

• Libvirt CLI and Desktop Applications

#### **Open-source Distributions**

- Ubuntu 9.04 (Jaunty Jackalope)
- Chapter on Cloud Technologies in the Morfeo open-source community

### **Standardization Bodies**

OGF Open Cloud Computing Interface



# **Cloud Taxonomy**



Private Cloud

- The infrastructure is owned and used by a single organization
- Private clouds enable a flexible and agile management of local infrastructure
- Not a new model, datacenter management has been around for a while
- Internal interfaces expose additional functionality for managing virtualized resources and controlling data center operation, not exposed by cloud interfaces
- Cloud interfaces may be also provided for users requiring higher abstraction



- Centralized management
- VM placement optimization
- Dynamic resizing and partitioning of the infrastructure
- Support for heterogeneous workloads



#### Private Cloud

| Feature                                     | Function                                                                                                                                                                                       |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal Interface                          | <ul> <li>Unix-like CLI for fully management of VM life-cycle and physical boxes</li> <li>XML-RPC API and libvirt virtualization API</li> </ul>                                                 |
| Scheduler                                   | <ul> <li>Requirement/rank matchmaker allowing the definition of workload and resource-aware allocation policies</li> <li>Support for advance reservation of capacity through Haizea</li> </ul> |
| Virtualization<br>Management                | <ul> <li>Xen, KVM, and VMware</li> <li>Generic libvirt connector (VirtualBox planned for 1.4.2)</li> </ul>                                                                                     |
| Image Management                            | <ul> <li>General mechanisms to transfer and clone VM images</li> </ul>                                                                                                                         |
| Network Management                          | <ul> <li>Definition of isolated virtual networks to interconnect VMs</li> </ul>                                                                                                                |
| Service Management<br>and Contextualization | <ul> <li>Support for multi-tier services consisting of groups of inter-connected<br/>VMs, and their auto-configuration at boot time</li> </ul>                                                 |
| Security                                    | <ul> <li>Management of users by the infrastructure administrator</li> </ul>                                                                                                                    |
| Fault Tolerance                             | <ul> <li>Persistent database backend to store host and VM information</li> </ul>                                                                                                               |
| Scalability                                 | <ul> <li>Tested in the management of medium scale infrastructures with hundreds<br/>of servers and VMs (no scalability issues has been reported)</li> </ul>                                    |
| Installation                                | <ul> <li>Installation on a UNIX cluster front-end without requiring new services</li> <li>Distributed in Ubuntu 9.04 (Jaunty Jackalope)</li> </ul>                                             |
| Flexibility and<br>Extensibility            | <ul> <li>Open, flexible and extensible architecture, interfaces and components,<br/>allowing its integration with any product or tool</li> </ul>                                               |



Hybrid Cloud

- Extension of Private Clouds to combine private with public Cloud-based infrastructure to enable highly scalable hosting environments
- Access to remote cloud is fully transparent to private cloud users
- Hybrid Clouds enable the dynamic scaling of capacity to meet peak or fluctuating demands





Hybrid Cloud

| Feature       | Function                                                                     |
|---------------|------------------------------------------------------------------------------|
| Cloud Plugins | <ul> <li>Amazon EC2 and ElasticHosts connectors</li> </ul>                   |
| Federation    | <ul> <li>Support for simultaneous access to several remote clouds</li> </ul> |
| Flexibility   | <ul> <li>Modular approach to develop new connectors</li> </ul>               |

dsa-research.org



Public Cloud

- The infrastructure is owned by a single commercial organization and used by customers
- Public clouds enable the deployment of an entire IT infrastructure without the associated capital costs, paying only for the used capacity
- Cloud interface: Simple remote management of virtualized server instances





Public Cloud

| Feature                       | Function                                                                                     |
|-------------------------------|----------------------------------------------------------------------------------------------|
| Cloud Interfaces for<br>Users | <ul> <li>Implementation of a subset of the EC2 Query API and the OGF OCCI<br/>API</li> </ul> |
| Flexibility                   | The new OpenNebula Cloud API allows the implementation of the new<br>Cloud interfaces        |



# **The RESERVOIR Project**



# The RESERVOIR Project

Overview



## Resources and Services Virtualization without Barriers

- Open source technology to enable deployment and management of complex IT services across different administrative domains
- Functionality for Service Management
  - Definition
  - Lifecycle
  - Billing/accounting
  - Elasticity/SLAs



## Flagship of Cloud Computing Research in FP7

- Focus on technologies that enable to build a federation of cooperating computing clouds
- A project driven by business use cases: SAP business application, Telco application, utility computing and eGov application
- 17-million and 3-year project partially funded by the European Commission
- Partners: IBM, Telefónica, UCL, Umea, SAP, Thales, SUN, Elsag Datamat, UCM, CETIC, University of Lugano, University of Messina, OGF.eeig.



# The RESERVOIR Project

Organization

#### **RESERVOIR** Architecture









#### Overview

- OpenNebula OCCI RESTful web service
  - Launches and manages images, virtual networks and virtual machines
  - Uses an unfinished draft of the OGF OCCI API specification
    - Update planned for v1.6





Pool Resources

The "COMPUTE" Pool

• HTTP Methods : GET, POST

<COMPUTES>

<COMPUTE href="http://www.occi.org/compute/234">
 <COMPUTE href="http://www.occi.org/compute/432">
 <COMPUTE href="http://www.occi.org/compute/123">
 </COMPUTES>

## The "STORAGE" and "NETWORK" Pool

- HTTP Methods : GET, POST
- Similar structure





Entity Resources

### The "STORAGE" Object

• HTTP Methods : GET, DELETE

<DISK>

<ID>123</ID>
</NAME>Ubuntu 9.04 LAMP</NAME>
<SIZE>2048</SIZE>
<URL>file:///images/ubuntu/jaunty.img</URL>
</DISK>

### The "NETWORK" Object

• HTTP Methods : GET, DELETE

<NETWORK>

<ID>123</ID> <NAME>Blue Network</NAME> <ADDRESS>192.168.0.1</ADDRESS> <SIZE>C</SIZE> </NETWORK>



Entity Resources

### The "COMPUTE" Object

• HTTP Methods : GET, PUT, DELETE

```
<COMPUTE>
  <ID>123AF</ID>
  <NAME>Web Server</NAME>
  <TYPE>small</TYPE>
  <STATE>running</STATE>
   <DISKS>
     <DISK image=http://www.occi.org/storage/234 dev=sda1/>
     <SWAP size=1024 dev=sda2/>
     <FS size=1024 format=ext3 dev=sda3/>
  </DISKS>
   <NICS>
     <NIC network=http://www.occi.org/network/123
ip="19.12.1.1"/>
     <NIC network=0/>
  </NICS>
</COMPUTE>
```



#### Implementation choices

- OCCI Specification incomplete (at the time)
- Assumptions:
  - Representation format
    - XML
    - Resource attributes set by OpenNebula needs
  - Specification not clear about linking resources
    - XML nesting
  - Specification of local devices
    - OpenNebula uses unix devices with "dev" attributes
      - e.g. : <DISK image="ab5c9770-7ade-012c-f1d5-00254bd6f386" dev="sda1"/>
  - Management verbs not well defined (for stop, resume, etc)
    - Update representation through PUT chosen
      - More RESTful
      - Sometimes can be misleading
  - Storage POST not well defined
    - Upload image through HTTP multipart



- Managing "compute" resources
  - occi-compute {create, list, show, update, delete}

- Managing "network" resources
  - occi-network {create, list, show, delete}

- Managing "storage" resources
  - occi-storage {create, list, show, delete}



# Hands On



Accounts

Server

Clients

https://devel.cloud.opennebula.org

\$ ssh cloud02.dacya.ucm.es -l <user>

- user: "occiclient{01..40}"
- password: "ogfmunich"



Prerequisites

- Software dependencies already installed
  - More details in

http://opennebula.org/documentation:rel1.4:occicg

• Cloud02 is a Ubuntu machine, for platform specific notes go to

http://opennebula.org/documentation:rel1.4:notes

OCCI Client code inside OpenNebula

\$ git clone git://opennebula.org/one.git



Setting up the accounts

### Environment

\$ cd one

\$ ./install.sh -d \$HOME/occiclient -c occi

\$ export ONE\_LOCATION=\$HOME/occiclient

\$ export PATH=\$PATH:\$ONE\_LOCATION/bin

\$ export OCCI\_URL=https://devel.cloud.opennebula.org

### Authorization

\$ mkdir \$HOME/.one \$ echo `whoami`:ogf28 > \$HOME/.one/one\_auth

OCCI accounts

• same usernames, password = ogf28



- Upload disabled in public cloud
- Common operations
  - List pool
  - Show details of one STORAGE resource
  - Upload image

/var/tmp/occi-examples/image.xml



- RANGED networks
  - Network address
  - Size
- Common operations
  - List pool

- Delete network
- Create NETWORK resource
- Show details

/var/tmp/occi-examples/network.xml



Managing a Compute Resource

- COMPUTES uses
  - NETWORKS
  - STORAGE
- Common operations
  - List pool
  - Create COMPUTE resource
  - Show details

/var/tmp/occi-examples/compute.xml

- Update state
- Delete compute



Connecting standards

http://snia.org/cloud

- Joint demo in OGF 29 @ Chicago, June 2010
- Cloud computing infrastructure can implement OCCI and CDMI
  - RESTful HTTP interface
  - JSON format representation



dsa-research.org

# **OCCI Implementation on top of OpenNebula**

THANK YOU FOR YOUR ATTENTION!!! More info, downloads, mailing lists at www.OpenNebula.org

dsa-research.org

OpenNebula is partially funded by the "RESERVOIR– Resources and Services Virtualization without Barriers" project EU grant agreement 215605



www.reservoir-fp7.eu/

## Acknowledgements

- Ignacio M. Llorente Javier Fontán
- Rubén S. Montero
   Rafael Moreno
- Jaime Melis