
 Design, build and use Private, Hybrid and
Public Cloud with OpenNebula

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

Building Clouds with OpenNebula 1.4 Constant

  Cloud Computing Overview
  Planning the Installation
  Building your Private Cloud

  Installing OpenNebula 1.4
  Configure OpenNebula 1.4 (storage, hypervisor and network)
  Administration of an OpenNebula Cloud (hosts, users)
  Basic usage (networks, VMs)
  More on usage (VMs, context and scheduling)

  Building your HybridCloud
  Configuring an Hybrid Cloud with Amazon EC2

  Building your Public Cloud
  Public Cloud interfaces: The EC2 Query API

Private Cloud

Hybrid Cloud

Public Cloud

PART I: Cloud Computing Overview

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

Creative Commons Attribution Share Alike (CC-BY-SA)

Software as a Service

ﾺ

Platform as a Service

Infrastructure as a
Service

Physical Infrastructure

What Who
On-demand access
to any application

End-user
(does not care about hw or sw)

Platform for building
and delivering web
applications

Developer
(no managing of the underlying
hw & swlayers)

Delivery of a raw
computer
infrastructure

System Administrator
(complete management of the
computer infrastructure)

Creative Commons Attribution Share Alike (CC-BY-SA)

  Simple Interface

  Raw Infrastructure Resources
  Total control of the resources

  Capacity leased in the form of VMs

  Complete Service-HW decoupling

  Pay-as-you-go

  A single user can not get all the resources

  Elastic & “infinite” Capacity

Creative Commons Attribution Share Alike (CC-BY-SA)

Network

Image
Repositories

(Storage)
Physical Infrastructure

Virtual Infrastructure Manager (VIM)

Cloud API
(web)

VM VM VM VM VM VM

Service Service

Creative Commons Attribution Share Alike (CC-BY-SA)

hypervisor hypervisor hypervisor hypervisor

OpenNebula (VIM)

VM VM VM VM

  VMs are great!!...but something more is needed

  Where did/do I put my VM? (scheduling & monitoring)

  How do I provision a new cluster node? (clone & context)

  What MAC addresses are available? (networking)

  Provides a uniform view of the resource pool

  Life-cycle management and monitoring of VM

  The VIM integrates Image, Network and Virtualization

Creative Commons Attribution Share Alike (CC-BY-SA)

  The workshop cluster is composed by three nodes:

o  FrontEnd: Ubuntu Server 10.04 OpenNebula will be installed here.

o  Host 01: CentOS 5.4 running Xen. Worker node

o  Host 02: CentOS 5.4 running Xen. Worker node

o  For the hands-on, we will use the OpenNebula ‘dummy’ cloud

o  Please, download OpenNebula v1.4 and untar it

PART II: Planning the Installation

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

Creative Commons Attribution Share Alike (CC-BY-SA)

  Executes the OpenNebula Services
  Usually acts as a classical cluster front-end

  Provides physical resources to VMs
  Must have a hypervisor installed

  Modular components to interact
with the cluster services

  Types: storage, monitoring,
virtualization and network

  Repository of VM images
  Multiple backends (LVM, iSCSI..)

 The same host can be can be a
the front-end and a node

Creative Commons Attribution Share Alike (CC-BY-SA)

  Choose your installation mode

  system wide (/usr, /etc...)

  self-contained (under $ONE_LOCATION)

  Install software dependencies.

  Check the documentation for platform specific notes installation
nodes

http://opennebula.org/documentation:rel1.4:notes

  Dependencies already installed in the Front-End and the
Nodes

Creative Commons Attribution Share Alike (CC-BY-SA)

  The Users of the private cloud:

  oneadmin: Account to run the daemons, manage the system
and do all the low-level operations (e.g. start VMs, move
images...).

  Users: create and manage their own VMs and networks. Need to
be defined in OpenNebula

  Installation layout for the workshop

  OpenNebula code will be placed in /home/oneadmin/SRC

  We will use the /srv/cloud/one directory to place the
OpenNebula software

  NFS sharing between Front-End and Nodes

  Passwordless ssh conections

 The oneadmin account must be created system wide (i.e. front-end and all the
nodes) you can use NIS, or a local account with the same ID's in all the hosts. Users
do not need a UNIX account in the nodes, nor in the front-end.

Creative Commons Attribution Share Alike (CC-BY-SA)

  Preparing the storage for the private cloud...

  Image Repository: Any storage medium for the VM images
(usually a high performing SAN)

-  OpenNebula supports multiple back-ends (e.g. LVM for fast cloning)

-  The front-end must have access to the repository

  VM Directory: The home of the VM in the cluster node

-  Stores checkpoints, description files and VM disks

-  Actual operations over the VM directory depends on the storage
medium

-  Should be shared for live-migrations

-  You can go on without a shared FS and use the SSH back-end

-  Defaults to $ONE_LOCATION/var/$VM_ID

 Dimensioning the Storage... Example: A 64 core cluster will typically run around
80VMs, each VM will require an average of 10GB of disk space. So you will need
~800GB for /srv/cloud/one, you will also want to store 10-15 master images so ~200GB
for /srv/cloud/images. A 1TB /srv/cloud will be enough for this example setup.

Creative Commons Attribution Share Alike (CC-BY-SA)

  In this workshop we will use NFS to share the VM
directories

  The Image Repository is /srv/cloud/images

Creative Commons Attribution Share Alike (CC-BY-SA)

  Networking for the private cloud

  OpenNebula management operations uses a
ssh connections, it does not require a
performing NIC

  Image traffic, may require the movement of
heavy files (VM images, checkpoints).
Dedicated storage links may be a good idea

  VM demands, consider the typical
requirements of your VMs. Several NICs to
support the VM traffic may be a good idea

  OpenNebula relies on bridge networking for
the VMs

Creative Commons Attribution Share Alike (CC-BY-SA)

  Installing the Hypervisor

  OpenNebula supports KVM, Xen and Vmware (even
simultaneously). This workshop applies to KVM and Xen

  Refer to the hypervisor documentation for additional (and better
information) on setting up them.

  In this workshop, we will use XEN.

Creative Commons Attribution Share Alike (CC-BY-SA)

$ brctl show
Bridge name bridge id STP enabled interfaces
virbr0 8000.000000000000 yes
xenbr0 8000.feffffffffff no peth0

 vif0.0

  The software bridge is essential for having different VMs in the
same host with connectivity

  Let’s check the bridge in the hosts

Creative Commons Attribution Share Alike (CC-BY-SA)

  Test the installation for the oneadmin account

  This ensures that oneadmin is capable of running VMs

$ sudo xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 256 1 r----- 8.2

PART III: Building a Private Cloud

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Creative Commons Attribution Share Alike (CC-BY-SA)

  Let’s Grab the source code and compile it

  Install the software in /srv/cloud/one (ONE_LOCATION)

  Check and explore the installation tree

~/SRC$ scp gw:one-1.4.0.tar.gz .
~/SRC$ tar xzvf one-1.4.0.tar.gz
~/SRC$ cd one-1.4/
~/SRC$ scons

$ export ONE_LOCATION=/srv/cloud/one/
$./install.sh -d $ONE_LOCATION

Check install.sh -h for other options

~$ ls -F
bin/ etc/ examples.desktop include/ lib/ share/ SRC/ var/

Creative Commons Attribution Share Alike (CC-BY-SA)

Creative Commons Attribution Share Alike (CC-BY-SA)

  $ONE_LOCATION/etc/oned.conf
  General configuration
  Defines the drivers used in the private cloud

  $ONE_LOCATION/etc/tm_*/tm_*.conf
  Defines action for generic storage operations

  $ONE_LOCATION/etc/im_*/im_*.conf
  Defines monitoring probes

  Match-making scheduler (default)
  Placement policies configured per VM

  $ONE_LOCATION/etc/vmm_*/vmm_*.conf
  Defaults values for the hypervisor

Creative Commons Attribution Share Alike (CC-BY-SA)

  General configuration attributes

  Monitoring intervals, HOST_MONITORING_INTERVAL
VM_POLLING_INTERVAL

  VM_DIR: Path to the VM directory for all the cluster nodes.

  Network parameters, MAC_PREFIX, NETWORK_SIZE

  PORT : Port where oned will listen for xml-rpc calls

  DEBUG_LEVEL

HOST_MONITORING_INTERVAL = 60
VM_POLLING_INTERVAL = 60

#VM_DIR = /srv/cloud/one/var

MAC_PREFIX = "00:01"
NETWORK_SIZE = 254

PORT = 2633
DEBUG_LEVEL = 3

Creative Commons Attribution Share Alike (CC-BY-SA)

  Information Drivers, to monitor cluster nodes

  name: identifies the driver

  executable: absolute or relative to $ONE_LOCATION/lib/mads

  arguments: a probe configuration file

IM_MAD = [
 name = "im_xen",
 executable = "one_im_ssh",
 arguments = "im_xen/im_xen.conf"]

  Transfer Drivers, to interface with the storage

  name: identifies the driver

  executable: path to driver executable

  arguments: storage commands configuration file

TM_MAD = [
 name = "tm_nfs",
 executable = "one_tm",
 arguments = "tm_nfs/tm_nfs.conf"]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtualization Drivers, to interface the hypervisors

  name: identifies the driver

  executable: absolute or relative to $ONE_LOCATION/lib/mads

  arguments: (not needed for the distribution drivers)

  default: default values for the hypervisor

  type: format of the VM description file to be passed to the driver:
xen, kvm or xml

VM_MAD = [
 name = "vmm_xen",
 executable = "one_vmm_xen",
 default = "vmm_xen/vmm_xen.conf",
 type = ”xen"]

  Hooks, custom programs that are executed on specific events,
e.g. VM creation.

  Hands on... Check and adjust the values of oned.conf for your
cloud

Creative Commons Attribution Share Alike (CC-BY-SA)

  Accounts in OpenNebula
  oneadmin, has enough privileges to perform any operation on any

object. It is created the first time OpenNebula is started using the
ONE_AUTH data

  Regular user accounts must be created by oneadmin and they can only
manage their own objects.

  Configuring the oneadmin account
  Environment variables: ONE_AUTH, ONE_LOCATION and ONE_XMLRPC

  Create the password file

$ tail .bashrc
export ONE_LOCATION=/srv/cloud/one
export ONE_AUTH=$HOME/.one/one_auth
export PATH=$PATH:$ONE_LOCATION/bin

$ mkdir .one
$ cd .one
$ cat one_auth
oneadmin:onecloud

Creative Commons Attribution Share Alike (CC-BY-SA)

  Use the one script

 Be sure to configure the oneadmin account (specially, create the ONE_AUTH file) before
starting OpenNebula for the first time.

$ source .bashrc
$ echo $ONE_AUTH
/srv/cloud/one/.one/one_auth

$one start
oned and scheduler started

$ more $ONE_LOCATION/var/oned.log
Thu Jan 14 18:03:11 2010 [ONE][I]: Init OpenNebula Log system
Thu Jan 14 18:03:11 2010 [ONE][I]: Log Level: 3 [0=ERROR,1=WARNING,
2=INFO,3=DEBUG]
Thu Jan 14 18:03:11 2010 [ONE][I]: ------------------------------------
Thu Jan 14 18:03:11 2010 [ONE][I]: OpenNebula Configuration File
Thu Jan 14 18:03:11 2010 [ONE][I]: ------------------------------------

Creative Commons Attribution Share Alike (CC-BY-SA)

  Cluster nodes are defined with

  Hostname of the cluster node or IP

  Information Driver to be used to monitor the host

  Storage Driver to clone, delete, move or copy images into the
host

  Virtualization Driver to boot, stop, resume VMs in the host

  Cluster nodes are managed with the onehost utility

  Create & delete hosts

  List the hosts in the cluster

  Show detailed information from a host

  Enable/Disable a host

Creative Commons Attribution Share Alike (CC-BY-SA)

  Hands on... configure the hosts of your private cloud

$ onehost create host01 im_xen vmm_xen tm_nfs
$ onehost create host02 im_xen vmm_xen tm_nfs

$ onehost list
 ID NAME RVM TCPU FCPU ACPU TMEM FMEM STAT
 0 host01 0 0 0 100 0 0 on
 1 host02 0 0 0 100 0 0 on

$ tail -f $ONE_LOCATION/var/oned.log
Thu Jan 14 18:07:39 2010 [InM][I]: Monitoring host host01(0)
Thu Jan 14 18:07:39 2010 [InM][I]: Monitoring host host02 (1)
Thu Jan 14 18:07:43 2010 [InM][D]: Host 0 successfully monitored.
Thu Jan 14 18:07:44 2010 [InM][D]: Host 1 successfully monitored.

$ onehost list
 ID NAME RV TCPU FCPU ACPU TMEM FMEM STAT
 0 host01 0 200 184 184 2017004 1848172 on
 1 host02 0 200 200 200 2017004 1857172 on

$ onehost show 0

  Hands on... Explore and test the onehost command in your cloud

Creative Commons Attribution Share Alike (CC-BY-SA)

  Users are defined within OpenNebula by:

  ID unique identifier for the user

  Name of the user, used for authentication

  Password used for authentication

  Users are managed with the oneuser utility

  Create & delete users

  List the users in the cluster

  Hands on... create new users in your private cloud and
configure the “user” UNIX account

$ oneuser create helen mypass
User “Helen” should put helen:mypass in $ONE_AUTH

$ oneuser list
 UID NAME PASSWORD ENABLE
 0 oneadmin c24783ba96a35464632a624d9f829136edc0175e True
 2 helen 34a91f713808846ade4a71577dc7963631ebae14 True

$ oneuser delete helen

Creative Commons Attribution Share Alike (CC-BY-SA)

  The operations of the OpenNebula daemon and
scheduler are logged in:

  oned: $ONE_LOCATION/var/oned.log, Its verbosity is set by
DEBUG_LEVEL in $ONE_LOCATION/etc/oned.conf.

  Scheduler (mm_sched): All the scheduler information is
collected into the $ONE_LOCATION/var/sched.log file.

  VM logs and files are in $ONE_LOCATION/var/<VM_ID>,
more in a few slides...

  Drivers can activate ONE_MAD_DEBUG in the associated
RC file (or in $ONE_LOCATION/etc/defaultrc)

Creative Commons Attribution Share Alike (CC-BY-SA)

  A Virtual Network in OpenNebula

  Defines a separated MAC/IP address space to be used by VMs

  Each virtual network is associated with a physical network through
a bridge

  Virtual Networks can be isolated (at layer 2 level) with ebtables
and hooks

  Virtual Network definition

  Name, of the network

  Type

-  Fixed, a set of IP/MAC leases

-  Ranged, defines a network range

  Bridge, name of the physical bridge in the physical host where the
VM should connect its network interface.

  Virtual Networks are managed with the onevnet utility

 Networks created by oneadmin are public, i.e. can be used by VMs of any other user

Creative Commons Attribution Share Alike (CC-BY-SA)

$ cat real.net
NAME = ”One-TD"
TYPE = RANGED
BRIDGE = xenbr0
NETWORK_SIZE = 125
NETWORK_ADDRESS = 192.168.$CN.128

$ cat fake.net
NAME = “One-TD-Invisible"
TYPE = FIXED
BRIDGE = xenbr0
LEASES = [IP=192.168.($CN+100).5]
LEASES = [IP=192.168.($CN+100).10]
LEASES = [IP=192.168.($CN+100).15]
LEASES = [IP=192.168.($CN+100).20]
LEASES = [IP=192.168.($CN+100).25]

$ onevnet -v create real.net
$ onevnet -v create fake.net

Creative Commons Attribution Share Alike (CC-BY-SA)

  Using a Virtual Network with your VMs

  Define NICs attached to a given virtual network. The VM will
get a NIC with a free MAC in the network and attached to
the corresponding bridge

  Prepare the VM to use the IP. Sample scripts to set the IP
based on the MAC are provided for several Linux
distributions.

#A VM with two interfaces each one in a different vlan
NIC=[NETWORK="One-TD"]
NIC=[NETWORK="One-TD-Invisible"]

#Ask for a specific IP/MAC of the Red vlan
NIC=[NETWORK="One-TD", IP=192.168.$CN.140]

IP-MAC address correspondence

IP: 10.0.1.2!

MAC: 02:01:0A:00:01:02!

oned.conf IP Address

Creative Commons Attribution Share Alike (CC-BY-SA)

  Preparing a VM to be used with OpenNebula

  You can use any VM prepared for the target hypervisor

  Hint I: Place the vmcontext.sh script in the boot process to
make better use of vlans

  Hint II: Do not pack useless information in the VM images:

-  swap. OpenNebula can create swap partitions on-the-fly in the
target host

-  Scratch or volatile storage. OpenNebula can create plain FS
on-the-fly in the target host

  Hint III: Install once and deploy many; prepare master
images

  Hint IV: Do not put private information (e.g. ssh keys) in the
master images, use the CONTEXT

  Hint V: Pass arbitrary data to a master image using CONTEXT

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machine Life-cycle

Creative Commons Attribution Share Alike (CC-BY-SA)

  A Virtual Machine in OpenNebula

  A capacity in terms memory and CPU

  A set of NICs attached to one or more virtual networks

  A set of disk images, to be “transferred” to/from the execution
host.

  A state file (optional) or recovery file, with the memory image of a
running VM plus some hypervisor specific information.

  Virutal Machines are defined in a VM template

  Each VM has an unique ID in OpenNebula the VM_ID

  All the files (logs, images, state files...) are stored in
$ONE_LOCATION/var/<VM_ID>

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machine Definition File (VM templates)
#---------------------------------------
Name of the VM
#---------------------------------------
NAME = "vm-example" # Optional, Default: one-$VMID

#---------------------------------------
Capacity
#---------------------------------------
CPU = "amount_of_requested_CPU"
MEMORY = "amount_of_requested_MEM"
VCPU = "number of virtual cpus"

#---------------------------------------
OS and boot options
#---------------------------------------
OS = [
 kernel = "path_to_os_kernel", # para-virtualization
 initrd = "path_to_initrd_image", # para-virtualization
 kernel_cmd = "kernel_command_line",
 root = "device to be mounted as root"
 bootloader = "path to the boot loader exec”
 boot = "device to boot from"]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machine Definition File (VM templates)
#---------------------------------------
Features of the hypervisor
#---------------------------------------

FEATURES = [
 pae = "yes|no", # Optional, KVM
 acpi = "yes|no"] # Optional, KVM

#---------------------------------------
VM Disks
#---------------------------------------

DISK = [
 type = "floppy|disk|cdrom|swap|fs|block",
 source = "path_to_disk_image_file|physical_dev",
 format = “type for fs disks”,
 size = "size_in_GB",
 target = "device_to_map_disk",
 bus = "ide|scsi|virtio|xen",
 readonly = "yes|no",
 clone = "yes|no",
 save = "yes|no"]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machine Definition File (VM templates)
#---------------------------------------
Network Interfaces
#---------------------------------------

NIC = [
 network = "name_of_the_virtual_network",
 ip = "ip_address",
 bridge = "name_of_bridge_to_bind_if",
 target = "device_name_to_map_if",
 mac = "HW_address",
 script = "path_to_script_to_bring_up_if",
 Model = "NIC model"]

#---------------------------------------
I/O Interfaces
#---------------------------------------

INPUT = [
 type = "mouse|tablet",
 bus = "usb|ps2|xen"]

Creative Commons Attribution Share Alike (CC-BY-SA)

#---------------------------------------
I/O Interfaces
#---------------------------------------

GRAPHICS = [
 type = "vnc|sdl",
 listen = "IP-to-listen-on",
 port = "port_for_VNC_server",
 passwd = "password_for_VNC_server"]

#---------------------------------------
Raw Hypervisor attributes
#---------------------------------------

RAW = [
 type = "xen|kvm",
 data = "raw_domain_configutarion"]

  Virtual Machine Definition File (VM templates)

 Not all the parameters are supported for each hypervisor. Complete reference and
examples for all sections in
http://www.opennebula.org/doku.php?id=documentation:rel1.4:template

Creative Commons Attribution Share Alike (CC-BY-SA)

NAME = ttylinux
CPU = 0.1
MEMORY = 64

DISK = [
 source = "/srv/cloud/images/ttylinux/ttylinux.img",
 target = "hda",
 readonly = "no"]

NIC = [NETWORK = ”One-TD"]

FEATURES = [acpi="no"]

#This may be useful to debug your VMs (can use also console)

GRAPHICS = [
 type = "vnc",
 listen = "loclahost",
 port = "5902",
 keymap="es"]

  Let’s ttylinux VM

Creative Commons Attribution Share Alike (CC-BY-SA)

$ onevm create ttylinux.one

$ onevm list
 ID USER NAME STAT CPU MEM HOSTNAME TIME
 1 oneadmin ttylinux pend 0 0 00 00:00:28

$ onevm top

  Virtual Machines are managed with the onevm utility

  Operations: create, deploy shutdown, livemigrate, stop, cancel,
resume, suspend, delete, restart

  Information: list, show, top, history

  Let’s copy the one ttylinux image form the front-end

$ cd /srv/one/images
$ scp gw:ttylinux-xen.tar.gz .
$ tar xvzf ttylinux-xen.tar.gz

PART IV: Building your Hybrid Cloud

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Creative Commons Attribution Share Alike (CC-BY-SA)

  External Clouds are like any other host
  Placement constraints

  VMs can be local or remote
  VM connectivity has to be configured, usually VPNs

Creative Commons Attribution Share Alike (CC-BY-SA)

  OpenNebula distribution includes drivers to build hybrid clouds
with Amazon EC2 and Elastic Hosts

  Let’s try the EC2 tools (ec2-*)

$ echo $EC2_PRIVATE_KEY

$ echo $EC2_CERT

$ ec2-describe-images
IMAGE ami-da9f7bb3 eggplant/image.manifest.xml 587384515363

 available private i386 machine aki-a71cf9ce ari-
a51cf9cc
IMAGE ami-a99e7ac0 nginx-apple/image.manifest.xml 587384515363

 available private i386 machine aki-a71cf9ce ari-
a51cf9cc

Creative Commons Attribution Share Alike (CC-BY-SA)

  First, we need to add the following drivers to oned.conf

  Let’s check the values of the driver configurations files

IM_MAD = [
 name = "im_ec2",
 executable = "one_im_ec2",
 arguments = "im_ec2/im_ec2.conf"] # No. of instances of each type

VM_MAD = [
 name = "vmm_ec2",
 executable = "one_vmm_ec2",
 arguments = "vmm_ec2/vmm_ec2.conf", # Defaults, e.g. keypair
 type = "xml"]

TM_MAD = [#No actual transfers are made by OpenNebula to EC2
 name = "tm_dummy",
 executable = "one_tm",
 arguments = "tm_dummy/tm_dummy.conf"]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Configure the account to be used with Amazon EC2

  Restart the OpenNebula daemon, and check that the new
drivers are loaded

$ vim $ONE_LOCATION/etc/vmm_ec2/vmm_ec2rc
#--
EC2 API TOOLS Configuration.
#--
EC2_HOME=/usr
EC2_PRIVATE_KEY="/srv/cloud/one/ec2/pk.pem"
EC2_CERT="/srv/cloud/one/ec2/cert.pem"

$ one stop; one start
$ more $ONE_LOCATION/var/oned.log
Fri Jan 15 18:16:46 2010 [VMM][I]: Loading Virtual Machine Manager driv
Fri Jan 15 18:16:46 2010 [VMM][I]: Loading driver: vmm_kvm (KVM)
Fri Jan 15 18:16:47 2010 [VMM][I]: Driver vmm_kvm loaded.
Fri Jan 15 18:16:47 2010 [VMM][I]: Loading driver: vmm_ec2 (XML)
Fri Jan 15 00:16:47 2010 [InM][I]: Loading Information Manager drivers.
Fri Jan 15 00:16:47 2010 [InM][I]: Loading driver: im_kvm
Fri Jan 15 00:16:47 2010 [InM][I]: Driver im_kvm loaded
Fri Jan 15 00:16:47 2010 [InM][I]: Loading driver: im_ec2

Creative Commons Attribution Share Alike (CC-BY-SA)

  Amazon EC2 cloud is manage by OpenNebula as any other
cluster node

  You can use several accounts by adding a driver for each account
(use the arguments attribute, -k and -c options). Then create a
host that uses the driver

  You can use multiple EC2 zones, add a driver for each zone (use
the arguments attribute, -u option), and a host that uses that driver

  You can limit the use of EC2 instances by modifying the IM file

  Lets create your EC2 hybrid cloud by adding a new host

$ onehost create ec2 im_ec2 vmm_ec2 tm_dummy

$ onehost list
 ID NAME RVM TCPU FCPU ACPU TMEM FMEM STAT
 0 84.21.x.y 0 200 200 200 2017004 1667080 on
 1 84.21.x.z 1 200 200 200 2017004 1681676 on
 2 ec2 0 500 500 500 8912896 8912896 on

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machines can be instantiated locally or in EC2

  The template must provide a description for both
instantiation methods.

  The EC2 counterpart of your VM (AMI_ID) must be available
for the driver account

  The EC2 VM template attribute:

EC2 = [
 AMI = "ami_id for this VM",
 KEYPAIR = "the keypair to use the instance",
 AUTHORIZED_PORTS = "ports to access the instance",
 INSTANCETYPE = "m1.small...",
 ELASTICIP = "the elastic ip for this instance",
 CLOUD = "host (EC2 cloud) to use this description with"
]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Add an EC2 counterpart to the ttylinux image

$vi ttylinux.one
#EC2 template machine, this will be use wen submitting this VM to EC2
EC2 = [AMI="ami-ccf615a5",
 KEYPAIR="keypair",
 AUTHORIZED_PORTS="22",
 INSTANCETYPE=m1.small]

#Add this if you want to use only EC2 cloud
REQUIREMENTS = "HOSTNAME = \"ec2\""

  Create the VM and check progress
$ onevm create ttylinux.one
$ onevm list
 ID USER NAME STAT CPU MEM HOSTNAME TIME
 16 oneadmin one-16 runn 0 0 ec2 00 00:00:35
$ ec2-describe-instances
RESERVATION r-5eff7536 418314910487 default
INSTANCE i-bac3f0d2 ami-0572946c pending
keypair0 m1.small 2010-01-14T23:32:35+0000 us-
east-1a aki-a71cf9ce ari-a51cf9cc monitoring-
disabled

$vi ttylinux.one
#EC2 template machine, this will be use wen submitting this VM to EC2
EC2 = [AMI="ami-ccf615a5",
 KEYPAIR="keypair",
 AUTHORIZED_PORTS="22",
 INSTANCETYPE=m1.small]

#Add this if you want to use only EC2 cloud
REQUIREMENTS = "HOSTNAME = \"ec2\""

Creative Commons Attribution Share Alike (CC-BY-SA)

  Log in the EC2 instance when running
$ onevm show 17
...
VIRTUAL MACHINE TEMPLATE
CPU=0.5
...
EC2=[
 AMI=ami-ccf615a5,
 AUTHORIZED_PORTS=22,
 INSTANCETYPE=m1.small,
 KEYPAIR=keypair]
IP=ec2-72-44-62-194.compute-1.amazonaws.com
 ...
REQUIREMENTS=HOSTNAME = "ec2"
VMID=17

$ ssh -i keypair.pem root@ec2-72-44-62-194.compute-1.amazonaws.com
Linux ip-10-212-134-128 2.6.21.7-2.fc8xen-ec2-v1.0 #2 SMP Tue Sep 1
10:04:29 EDT 2009 i686
root@ip-10-212-134-128:~#

This costs money!
$ onevm shutdown 17
$ onehost disable ec2
$ onehost list

PART V: Building your Public Cloud

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Creative Commons Attribution Share Alike (CC-BY-SA)

  You can use multiple interfaces for the Cloud
  Transparent to your setup:

  Hypervisor
  Storage Model
  Hybrid configuration

  Supports HTTP and HTTPS protocols
  EC2 authentication based on OpenNebula credentials
  Public Cloud users need an OpenNebula account

  Client tools uses EC2 libraries
  Potential integration with EC2 tools

(EC2_URL problems for example)
  Provided in the OpenNebula

distribution
  Includes a simple S3 replacement

Creative Commons Attribution Share Alike (CC-BY-SA)

  The EC2 service is configured in $ONE_LOCATION/etc/econe.conf

$ more econe.conf
OpenNebula administrator user, the one_auth contents
USER=oneadmin
PASSWORD=onecloud

OpenNebula sever contact information
ONE_XMLRPC=http://localhost:2633/RPC2

Host and port where econe server will run keep FQDNs
SERVER=node-y.opennebula.org
PORT=4567

Configuration for the image repository
IMAGE_DIR will store the Cloud images, check space!
DATABASE=/srv/cloud/one/var/econe.db
IMAGE_DIR=/srv/cloud/public_repo/

VM types allowed and its template file
VM_TYPE=[NAME=m1.small, TEMPLATE=m1.small.erb]

Creative Commons Attribution Share Alike (CC-BY-SA)

  You have to define the correspondence between types (simple)
and local instantiation of VMs (hard, you should be fine by now)

  Capacity allocated by this VM type (CPU, MEMORY)

  Your cloud requirements, e.g. force to use a given kernel (OS) or
place public VMs in a given set of cluster nodes (REQUIREMENTS)

  The network used by Public VMs (NIC)

  VM Types are defined in econe.conf. Templates for the VM
templates are in $ONE_LOCATION/etc/ec2query_templates

  Templates for VM Types are erb files <% Ruby code here %>, you
should not need to modify that.

Creative Commons Attribution Share Alike (CC-BY-SA)

  Let’s prepare the m1.small type of your cloud to use ttylinux.one
as a reference

$ more m1.small.erb

NAME = eco-vm

CPU = 0.1
MEMORY = 64

OS = [kernel = /srv/cloud/one/ttylinux-xen/vmlinuz-xen,
 initrd = /srv/cloud/one/ttylinux-xen/initrd.gz]

DISK = [source = <%= erb_vm_info[:img_path] %>,
 clone = yes,
 target = hda,
 readonly = no]

#You have to create this network, and it should be owned by oneadmin

NIC = [NETWORK = ”one-td"]

IMAGE_ID = <%= erb_vm_info[:img_id] %>
INSTANCE_TYPE = <%= erb_vm_info[:instance_type]%>

Creative Commons Attribution Share Alike (CC-BY-SA)

  Start the econe server

$ unset EC2_URL
$ econe-server start

$ lsof -i

Check $ONE_LOCATION/var/econe-server.log for errors

Creative Commons Attribution Share Alike (CC-BY-SA)

  The econe-tools are a subset of the functionality provided by the
onevm utility, and resembles the ec2-* cli

  Image related commands are:

  econe-upload, place an image in the Cloud repo and returns ID

  econe-describe-images, lists the images

  econe-register, register an image not really needed in 1.4

  Instance related commands are:

  econe-run-instances, starts a VM using an image ID

  econe-describe-instances, lists the VMs

  econe-terminate-instances, shutdowns a VM

  User authentication is based in the OpenNebula credentials

  AWSAccessKeyId is OpenNebula's username

  AWSSecretAccessKey is OpenNebula's password

Creative Commons Attribution Share Alike (CC-BY-SA)

HANDS ON

  Install the clients (./install –c ec2)

  Pass your credentials to the econe-tools by (in this order)

  Commands arguments (--access-key <username>,

 --secret-key <pass>)

  Environment EC2_ACCESS_KEY and EC2_SECRET_KEY

  Environment ONE_AUTH

  Point econe-tools to your target cloud

  Command arguments (--url <http|https>://<fqdn>:<port>) port
needed in not the default for the protocol

  EC2_URL environment

U: consegui$NUM NUM={01-30}
P: consegui2010

Creative Commons Attribution Share Alike (CC-BY-SA)

$ export EC2_URL="https:///devel.cloud.opennebula.org "
$ econe-describe-images –H –K consegui$NUM –S consegui2010
Owner ImageId Location

oneadmin 1 /srv/cloud/public_repo/1

$ econe-run-instances 1 –K consegui$NUM –S consegui2010
oneadmin 1 18 m1.small

$ econe-describe-instances –K consegui$NUM –S consegui2010
oneadmin 18 1 pending
192.168.169.5 m1.small

This is the local view not accessible to public cloud users
$ onevm list
 ID USER NAME STAT CPU MEM HOSTNAME TIME
 19 oneadmin eco-vm runn 0 65536 84.21.x.y 00 00:01:34

$ onevm show 19

More Information

More info, downloads, mailing lists at

Time? For Questions

EXTRAS

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Creative Commons Attribution Share Alike (CC-BY-SA)

  SSL security is handle by a proxy that forwards the request to the
EC2 Query Service and takes back the answer to the client

  Requirements:

  A server certificate for the SSL connections

  An HTTP proxy that understands SSL

  EC2Query Service configuration to accept petitions from the proxy

  Hands on... Install the proxy (lighttpd) and get the certificates for
your cloud

apt-get install lighttpd
apt-get install ssl-cert

/usr/sbin/make-ssl-cert generate-default-snakeoil
cat /etc/ssl/private/ssl-cert-snakeoil.key /etc/ssl/certs/ssl-cert-
snakeoil.pem > /etc/lighttpd/server.pem

Creative Commons Attribution Share Alike (CC-BY-SA)

  Hands on... configure the lighttpd proxy

vim /etc/lighttpd/lighttpd.conf
server.modules = (
 "mod_access",
 "mod_alias",
 "mod_accesslog",
 "mod_compress",
 "mod_proxy"
...
bind to port (default: 80)
server.port = 8443
...
proxy module
proxy.server = ("" =>
 ("" =>
 (
 "host" => "127.0.0.1",
 "port" => 4567
)
)
)
SSL engine
ssl.engine = "enable"
ssl.pemfile = "/etc/lighttpd/server.pem"

Creative Commons Attribution Share Alike (CC-BY-SA)

  Hands on... configure the econe server

  Hands on... by pass the EC2 library URL checking

  Hands on... restart services (lighttpd and econe-server) and try
your new SSL cloud access (https://node-x.opennebula.org:
8443)

$ vim /srv/cloud/one/etc/econe.conf

#SERVER=formiga-15.opennebula.org
SERVER=127.0.0.1
PORT=4567

SSL proxy that serves the API (set if is being used)
SSL_SERVER=formiga-15.opennebula.org

sudo vim /var/lib/gems/1.8/gems/amazon-ec2-0.7.9/lib/AWS/EC2.rb
Comment out line 12

$ vim /srv/cloud/one/etc/econe.conf

#SERVER=node-15.opennebula.org
SERVER=127.0.0.1
PORT=4567

SSL proxy that serves the API (set if is being used)
SSL_SERVER=node-15.opennebula.org

