
 Design, build and use Private, Hybrid and
Public Cloud with OpenNebula

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

Building Clouds with OpenNebula 1.4 Constant

  Cloud Computing Overview
  Planning the Installation
  Building your Private Cloud

  Installing OpenNebula 1.4
  Configure OpenNebula 1.4 (storage, hypervisor and network)
  Administration of an OpenNebula Cloud (hosts, users)
  Basic usage (networks, VMs)
  More on usage (VMs, context and scheduling)

  Building your HybridCloud
  Configuring an Hybrid Cloud with Amazon EC2

  Building your Public Cloud
  Public Cloud interfaces: The EC2 Query API

Private Cloud

Hybrid Cloud

Public Cloud

PART I: Cloud Computing Overview

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

Creative Commons Attribution Share Alike (CC-BY-SA)

Software as a Service

ﾺ

Platform as a Service

Infrastructure as a
Service

Physical Infrastructure

What Who
On-demand access
to any application

End-user
(does not care about hw or sw)

Platform for building
and delivering web
applications

Developer
(no managing of the underlying
hw & swlayers)

Delivery of a raw
computer
infrastructure

System Administrator
(complete management of the
computer infrastructure)

Creative Commons Attribution Share Alike (CC-BY-SA)

  Simple Interface

  Raw Infrastructure Resources
  Total control of the resources

  Capacity leased in the form of VMs

  Complete Service-HW decoupling

  Pay-as-you-go

  A single user can not get all the resources

  Elastic & “infinite” Capacity

Creative Commons Attribution Share Alike (CC-BY-SA)

Network

Image
Repositories

(Storage)
Physical Infrastructure

Virtual Infrastructure Manager (VIM)

Cloud API
(web)

VM VM VM VM VM VM

Service Service

Creative Commons Attribution Share Alike (CC-BY-SA)

hypervisor hypervisor hypervisor hypervisor

OpenNebula (VIM)

VM VM VM VM

  VMs are great!!...but something more is needed

  Where did/do I put my VM? (scheduling & monitoring)

  How do I provision a new cluster node? (clone & context)

  What MAC addresses are available? (networking)

  Provides a uniform view of the resource pool

  Life-cycle management and monitoring of VM

  The VIM integrates Image, Network and Virtualization

Creative Commons Attribution Share Alike (CC-BY-SA)

  The workshop cluster is composed by three nodes:

o  FrontEnd: Ubuntu Server 10.04 OpenNebula will be installed here.

o  Host 01: CentOS 5.4 running Xen. Worker node

o  Host 02: CentOS 5.4 running Xen. Worker node

o  For the hands-on, we will use the OpenNebula ‘dummy’ cloud

o  Please, download OpenNebula v1.4 and untar it

PART II: Planning the Installation

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

Creative Commons Attribution Share Alike (CC-BY-SA)

  Executes the OpenNebula Services
  Usually acts as a classical cluster front-end

  Provides physical resources to VMs
  Must have a hypervisor installed

  Modular components to interact
with the cluster services

  Types: storage, monitoring,
virtualization and network

  Repository of VM images
  Multiple backends (LVM, iSCSI..)

 The same host can be can be a
the front-end and a node

Creative Commons Attribution Share Alike (CC-BY-SA)

  Choose your installation mode

  system wide (/usr, /etc...)

  self-contained (under $ONE_LOCATION)

  Install software dependencies.

  Check the documentation for platform specific notes installation
nodes

http://opennebula.org/documentation:rel1.4:notes

  Dependencies already installed in the Front-End and the
Nodes

Creative Commons Attribution Share Alike (CC-BY-SA)

  The Users of the private cloud:

  oneadmin: Account to run the daemons, manage the system
and do all the low-level operations (e.g. start VMs, move
images...).

  Users: create and manage their own VMs and networks. Need to
be defined in OpenNebula

  Installation layout for the workshop

  OpenNebula code will be placed in /home/oneadmin/SRC

  We will use the /srv/cloud/one directory to place the
OpenNebula software

  NFS sharing between Front-End and Nodes

  Passwordless ssh conections

 The oneadmin account must be created system wide (i.e. front-end and all the
nodes) you can use NIS, or a local account with the same ID's in all the hosts. Users
do not need a UNIX account in the nodes, nor in the front-end.

Creative Commons Attribution Share Alike (CC-BY-SA)

  Preparing the storage for the private cloud...

  Image Repository: Any storage medium for the VM images
(usually a high performing SAN)

-  OpenNebula supports multiple back-ends (e.g. LVM for fast cloning)

-  The front-end must have access to the repository

  VM Directory: The home of the VM in the cluster node

-  Stores checkpoints, description files and VM disks

-  Actual operations over the VM directory depends on the storage
medium

-  Should be shared for live-migrations

-  You can go on without a shared FS and use the SSH back-end

-  Defaults to $ONE_LOCATION/var/$VM_ID

 Dimensioning the Storage... Example: A 64 core cluster will typically run around
80VMs, each VM will require an average of 10GB of disk space. So you will need
~800GB for /srv/cloud/one, you will also want to store 10-15 master images so ~200GB
for /srv/cloud/images. A 1TB /srv/cloud will be enough for this example setup.

Creative Commons Attribution Share Alike (CC-BY-SA)

  In this workshop we will use NFS to share the VM
directories

  The Image Repository is /srv/cloud/images

Creative Commons Attribution Share Alike (CC-BY-SA)

  Networking for the private cloud

  OpenNebula management operations uses a
ssh connections, it does not require a
performing NIC

  Image traffic, may require the movement of
heavy files (VM images, checkpoints).
Dedicated storage links may be a good idea

  VM demands, consider the typical
requirements of your VMs. Several NICs to
support the VM traffic may be a good idea

  OpenNebula relies on bridge networking for
the VMs

Creative Commons Attribution Share Alike (CC-BY-SA)

  Installing the Hypervisor

  OpenNebula supports KVM, Xen and Vmware (even
simultaneously). This workshop applies to KVM and Xen

  Refer to the hypervisor documentation for additional (and better
information) on setting up them.

  In this workshop, we will use XEN.

Creative Commons Attribution Share Alike (CC-BY-SA)

$ brctl show
Bridge name bridge id STP enabled interfaces
virbr0 8000.000000000000 yes
xenbr0 8000.feffffffffff no peth0

 vif0.0

  The software bridge is essential for having different VMs in the
same host with connectivity

  Let’s check the bridge in the hosts

Creative Commons Attribution Share Alike (CC-BY-SA)

  Test the installation for the oneadmin account

  This ensures that oneadmin is capable of running VMs

$ sudo xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 256 1 r----- 8.2

PART III: Building a Private Cloud

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Creative Commons Attribution Share Alike (CC-BY-SA)

  Let’s Grab the source code and compile it

  Install the software in /srv/cloud/one (ONE_LOCATION)

  Check and explore the installation tree

~/SRC$ scp gw:one-1.4.0.tar.gz .
~/SRC$ tar xzvf one-1.4.0.tar.gz
~/SRC$ cd one-1.4/
~/SRC$ scons

$ export ONE_LOCATION=/srv/cloud/one/
$./install.sh -d $ONE_LOCATION

Check install.sh -h for other options

~$ ls -F
bin/ etc/ examples.desktop include/ lib/ share/ SRC/ var/

Creative Commons Attribution Share Alike (CC-BY-SA)

Creative Commons Attribution Share Alike (CC-BY-SA)

  $ONE_LOCATION/etc/oned.conf
  General configuration
  Defines the drivers used in the private cloud

  $ONE_LOCATION/etc/tm_*/tm_*.conf
  Defines action for generic storage operations

  $ONE_LOCATION/etc/im_*/im_*.conf
  Defines monitoring probes

  Match-making scheduler (default)
  Placement policies configured per VM

  $ONE_LOCATION/etc/vmm_*/vmm_*.conf
  Defaults values for the hypervisor

Creative Commons Attribution Share Alike (CC-BY-SA)

  General configuration attributes

  Monitoring intervals, HOST_MONITORING_INTERVAL
VM_POLLING_INTERVAL

  VM_DIR: Path to the VM directory for all the cluster nodes.

  Network parameters, MAC_PREFIX, NETWORK_SIZE

  PORT : Port where oned will listen for xml-rpc calls

  DEBUG_LEVEL

HOST_MONITORING_INTERVAL = 60
VM_POLLING_INTERVAL = 60

#VM_DIR = /srv/cloud/one/var

MAC_PREFIX = "00:01"
NETWORK_SIZE = 254

PORT = 2633
DEBUG_LEVEL = 3

Creative Commons Attribution Share Alike (CC-BY-SA)

  Information Drivers, to monitor cluster nodes

  name: identifies the driver

  executable: absolute or relative to $ONE_LOCATION/lib/mads

  arguments: a probe configuration file

IM_MAD = [
 name = "im_xen",
 executable = "one_im_ssh",
 arguments = "im_xen/im_xen.conf"]

  Transfer Drivers, to interface with the storage

  name: identifies the driver

  executable: path to driver executable

  arguments: storage commands configuration file

TM_MAD = [
 name = "tm_nfs",
 executable = "one_tm",
 arguments = "tm_nfs/tm_nfs.conf"]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtualization Drivers, to interface the hypervisors

  name: identifies the driver

  executable: absolute or relative to $ONE_LOCATION/lib/mads

  arguments: (not needed for the distribution drivers)

  default: default values for the hypervisor

  type: format of the VM description file to be passed to the driver:
xen, kvm or xml

VM_MAD = [
 name = "vmm_xen",
 executable = "one_vmm_xen",
 default = "vmm_xen/vmm_xen.conf",
 type = ”xen"]

  Hooks, custom programs that are executed on specific events,
e.g. VM creation.

  Hands on... Check and adjust the values of oned.conf for your
cloud

Creative Commons Attribution Share Alike (CC-BY-SA)

  Accounts in OpenNebula
  oneadmin, has enough privileges to perform any operation on any

object. It is created the first time OpenNebula is started using the
ONE_AUTH data

  Regular user accounts must be created by oneadmin and they can only
manage their own objects.

  Configuring the oneadmin account
  Environment variables: ONE_AUTH, ONE_LOCATION and ONE_XMLRPC

  Create the password file

$ tail .bashrc
export ONE_LOCATION=/srv/cloud/one
export ONE_AUTH=$HOME/.one/one_auth
export PATH=$PATH:$ONE_LOCATION/bin

$ mkdir .one
$ cd .one
$ cat one_auth
oneadmin:onecloud

Creative Commons Attribution Share Alike (CC-BY-SA)

  Use the one script

 Be sure to configure the oneadmin account (specially, create the ONE_AUTH file) before
starting OpenNebula for the first time.

$ source .bashrc
$ echo $ONE_AUTH
/srv/cloud/one/.one/one_auth

$one start
oned and scheduler started

$ more $ONE_LOCATION/var/oned.log
Thu Jan 14 18:03:11 2010 [ONE][I]: Init OpenNebula Log system
Thu Jan 14 18:03:11 2010 [ONE][I]: Log Level: 3 [0=ERROR,1=WARNING,
2=INFO,3=DEBUG]
Thu Jan 14 18:03:11 2010 [ONE][I]: ------------------------------------
Thu Jan 14 18:03:11 2010 [ONE][I]: OpenNebula Configuration File
Thu Jan 14 18:03:11 2010 [ONE][I]: ------------------------------------

Creative Commons Attribution Share Alike (CC-BY-SA)

  Cluster nodes are defined with

  Hostname of the cluster node or IP

  Information Driver to be used to monitor the host

  Storage Driver to clone, delete, move or copy images into the
host

  Virtualization Driver to boot, stop, resume VMs in the host

  Cluster nodes are managed with the onehost utility

  Create & delete hosts

  List the hosts in the cluster

  Show detailed information from a host

  Enable/Disable a host

Creative Commons Attribution Share Alike (CC-BY-SA)

  Hands on... configure the hosts of your private cloud

$ onehost create host01 im_xen vmm_xen tm_nfs
$ onehost create host02 im_xen vmm_xen tm_nfs

$ onehost list
 ID NAME RVM TCPU FCPU ACPU TMEM FMEM STAT
 0 host01 0 0 0 100 0 0 on
 1 host02 0 0 0 100 0 0 on

$ tail -f $ONE_LOCATION/var/oned.log
Thu Jan 14 18:07:39 2010 [InM][I]: Monitoring host host01(0)
Thu Jan 14 18:07:39 2010 [InM][I]: Monitoring host host02 (1)
Thu Jan 14 18:07:43 2010 [InM][D]: Host 0 successfully monitored.
Thu Jan 14 18:07:44 2010 [InM][D]: Host 1 successfully monitored.

$ onehost list
 ID NAME RV TCPU FCPU ACPU TMEM FMEM STAT
 0 host01 0 200 184 184 2017004 1848172 on
 1 host02 0 200 200 200 2017004 1857172 on

$ onehost show 0

  Hands on... Explore and test the onehost command in your cloud

Creative Commons Attribution Share Alike (CC-BY-SA)

  Users are defined within OpenNebula by:

  ID unique identifier for the user

  Name of the user, used for authentication

  Password used for authentication

  Users are managed with the oneuser utility

  Create & delete users

  List the users in the cluster

  Hands on... create new users in your private cloud and
configure the “user” UNIX account

$ oneuser create helen mypass
User “Helen” should put helen:mypass in $ONE_AUTH

$ oneuser list
 UID NAME PASSWORD ENABLE
 0 oneadmin c24783ba96a35464632a624d9f829136edc0175e True
 2 helen 34a91f713808846ade4a71577dc7963631ebae14 True

$ oneuser delete helen

Creative Commons Attribution Share Alike (CC-BY-SA)

  The operations of the OpenNebula daemon and
scheduler are logged in:

  oned: $ONE_LOCATION/var/oned.log, Its verbosity is set by
DEBUG_LEVEL in $ONE_LOCATION/etc/oned.conf.

  Scheduler (mm_sched): All the scheduler information is
collected into the $ONE_LOCATION/var/sched.log file.

  VM logs and files are in $ONE_LOCATION/var/<VM_ID>,
more in a few slides...

  Drivers can activate ONE_MAD_DEBUG in the associated
RC file (or in $ONE_LOCATION/etc/defaultrc)

Creative Commons Attribution Share Alike (CC-BY-SA)

  A Virtual Network in OpenNebula

  Defines a separated MAC/IP address space to be used by VMs

  Each virtual network is associated with a physical network through
a bridge

  Virtual Networks can be isolated (at layer 2 level) with ebtables
and hooks

  Virtual Network definition

  Name, of the network

  Type

-  Fixed, a set of IP/MAC leases

-  Ranged, defines a network range

  Bridge, name of the physical bridge in the physical host where the
VM should connect its network interface.

  Virtual Networks are managed with the onevnet utility

 Networks created by oneadmin are public, i.e. can be used by VMs of any other user

Creative Commons Attribution Share Alike (CC-BY-SA)

$ cat real.net
NAME = ”One-TD"
TYPE = RANGED
BRIDGE = xenbr0
NETWORK_SIZE = 125
NETWORK_ADDRESS = 192.168.$CN.128

$ cat fake.net
NAME = “One-TD-Invisible"
TYPE = FIXED
BRIDGE = xenbr0
LEASES = [IP=192.168.($CN+100).5]
LEASES = [IP=192.168.($CN+100).10]
LEASES = [IP=192.168.($CN+100).15]
LEASES = [IP=192.168.($CN+100).20]
LEASES = [IP=192.168.($CN+100).25]

$ onevnet -v create real.net
$ onevnet -v create fake.net

Creative Commons Attribution Share Alike (CC-BY-SA)

  Using a Virtual Network with your VMs

  Define NICs attached to a given virtual network. The VM will
get a NIC with a free MAC in the network and attached to
the corresponding bridge

  Prepare the VM to use the IP. Sample scripts to set the IP
based on the MAC are provided for several Linux
distributions.

#A VM with two interfaces each one in a different vlan
NIC=[NETWORK="One-TD"]
NIC=[NETWORK="One-TD-Invisible"]

#Ask for a specific IP/MAC of the Red vlan
NIC=[NETWORK="One-TD", IP=192.168.$CN.140]

IP-MAC address correspondence

IP: 10.0.1.2!

MAC: 02:01:0A:00:01:02!

oned.conf IP Address

Creative Commons Attribution Share Alike (CC-BY-SA)

  Preparing a VM to be used with OpenNebula

  You can use any VM prepared for the target hypervisor

  Hint I: Place the vmcontext.sh script in the boot process to
make better use of vlans

  Hint II: Do not pack useless information in the VM images:

-  swap. OpenNebula can create swap partitions on-the-fly in the
target host

-  Scratch or volatile storage. OpenNebula can create plain FS
on-the-fly in the target host

  Hint III: Install once and deploy many; prepare master
images

  Hint IV: Do not put private information (e.g. ssh keys) in the
master images, use the CONTEXT

  Hint V: Pass arbitrary data to a master image using CONTEXT

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machine Life-cycle

Creative Commons Attribution Share Alike (CC-BY-SA)

  A Virtual Machine in OpenNebula

  A capacity in terms memory and CPU

  A set of NICs attached to one or more virtual networks

  A set of disk images, to be “transferred” to/from the execution
host.

  A state file (optional) or recovery file, with the memory image of a
running VM plus some hypervisor specific information.

  Virutal Machines are defined in a VM template

  Each VM has an unique ID in OpenNebula  the VM_ID

  All the files (logs, images, state files...) are stored in
$ONE_LOCATION/var/<VM_ID>

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machine Definition File (VM templates)
#---------------------------------------
Name of the VM
#---------------------------------------
NAME = "vm-example" # Optional, Default: one-$VMID

#---------------------------------------
Capacity
#---------------------------------------
CPU = "amount_of_requested_CPU"
MEMORY = "amount_of_requested_MEM"
VCPU = "number of virtual cpus"

#---------------------------------------
OS and boot options
#---------------------------------------
OS = [
 kernel = "path_to_os_kernel", # para-virtualization
 initrd = "path_to_initrd_image", # para-virtualization
 kernel_cmd = "kernel_command_line",
 root = "device to be mounted as root"
 bootloader = "path to the boot loader exec”
 boot = "device to boot from"]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machine Definition File (VM templates)
#---------------------------------------
Features of the hypervisor
#---------------------------------------

FEATURES = [
 pae = "yes|no", # Optional, KVM
 acpi = "yes|no"] # Optional, KVM

#---------------------------------------
VM Disks
#---------------------------------------

DISK = [
 type = "floppy|disk|cdrom|swap|fs|block",
 source = "path_to_disk_image_file|physical_dev",
 format = “type for fs disks”,
 size = "size_in_GB",
 target = "device_to_map_disk",
 bus = "ide|scsi|virtio|xen",
 readonly = "yes|no",
 clone = "yes|no",
 save = "yes|no"]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machine Definition File (VM templates)
#---------------------------------------
Network Interfaces
#---------------------------------------

NIC = [
 network = "name_of_the_virtual_network",
 ip = "ip_address",
 bridge = "name_of_bridge_to_bind_if",
 target = "device_name_to_map_if",
 mac = "HW_address",
 script = "path_to_script_to_bring_up_if",
 Model = "NIC model"]

#---------------------------------------
I/O Interfaces
#---------------------------------------

INPUT = [
 type = "mouse|tablet",
 bus = "usb|ps2|xen"]

Creative Commons Attribution Share Alike (CC-BY-SA)

#---------------------------------------
I/O Interfaces
#---------------------------------------

GRAPHICS = [
 type = "vnc|sdl",
 listen = "IP-to-listen-on",
 port = "port_for_VNC_server",
 passwd = "password_for_VNC_server"]

#---------------------------------------
Raw Hypervisor attributes
#---------------------------------------

RAW = [
 type = "xen|kvm",
 data = "raw_domain_configutarion"]

  Virtual Machine Definition File (VM templates)

 Not all the parameters are supported for each hypervisor. Complete reference and
examples for all sections in
http://www.opennebula.org/doku.php?id=documentation:rel1.4:template

Creative Commons Attribution Share Alike (CC-BY-SA)

NAME = ttylinux
CPU = 0.1
MEMORY = 64

DISK = [
 source = "/srv/cloud/images/ttylinux/ttylinux.img",
 target = "hda",
 readonly = "no"]

NIC = [NETWORK = ”One-TD"]

FEATURES = [acpi="no"]

#This may be useful to debug your VMs (can use also console)

GRAPHICS = [
 type = "vnc",
 listen = "loclahost",
 port = "5902",
 keymap="es"]

  Let’s ttylinux VM

Creative Commons Attribution Share Alike (CC-BY-SA)

$ onevm create ttylinux.one

$ onevm list
 ID USER NAME STAT CPU MEM HOSTNAME TIME
 1 oneadmin ttylinux pend 0 0 00 00:00:28

$ onevm top

  Virtual Machines are managed with the onevm utility

  Operations: create, deploy shutdown, livemigrate, stop, cancel,
resume, suspend, delete, restart

  Information: list, show, top, history

  Let’s copy the one ttylinux image form the front-end

$ cd /srv/one/images
$ scp gw:ttylinux-xen.tar.gz .
$ tar xvzf ttylinux-xen.tar.gz

PART IV: Building your Hybrid Cloud

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Creative Commons Attribution Share Alike (CC-BY-SA)

  External Clouds are like any other host
  Placement constraints

  VMs can be local or remote
  VM connectivity has to be configured, usually VPNs

Creative Commons Attribution Share Alike (CC-BY-SA)

  OpenNebula distribution includes drivers to build hybrid clouds
with Amazon EC2 and Elastic Hosts

  Let’s try the EC2 tools (ec2-*)

$ echo $EC2_PRIVATE_KEY

$ echo $EC2_CERT

$ ec2-describe-images
IMAGE ami-da9f7bb3 eggplant/image.manifest.xml 587384515363

 available private i386 machine aki-a71cf9ce ari-
a51cf9cc
IMAGE ami-a99e7ac0 nginx-apple/image.manifest.xml 587384515363

 available private i386 machine aki-a71cf9ce ari-
a51cf9cc

Creative Commons Attribution Share Alike (CC-BY-SA)

  First, we need to add the following drivers to oned.conf

  Let’s check the values of the driver configurations files

IM_MAD = [
 name = "im_ec2",
 executable = "one_im_ec2",
 arguments = "im_ec2/im_ec2.conf"] # No. of instances of each type

VM_MAD = [
 name = "vmm_ec2",
 executable = "one_vmm_ec2",
 arguments = "vmm_ec2/vmm_ec2.conf", # Defaults, e.g. keypair
 type = "xml"]

TM_MAD = [#No actual transfers are made by OpenNebula to EC2
 name = "tm_dummy",
 executable = "one_tm",
 arguments = "tm_dummy/tm_dummy.conf"]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Configure the account to be used with Amazon EC2

  Restart the OpenNebula daemon, and check that the new
drivers are loaded

$ vim $ONE_LOCATION/etc/vmm_ec2/vmm_ec2rc
#--
EC2 API TOOLS Configuration.
#--
EC2_HOME=/usr
EC2_PRIVATE_KEY="/srv/cloud/one/ec2/pk.pem"
EC2_CERT="/srv/cloud/one/ec2/cert.pem"

$ one stop; one start
$ more $ONE_LOCATION/var/oned.log
Fri Jan 15 18:16:46 2010 [VMM][I]: Loading Virtual Machine Manager driv
Fri Jan 15 18:16:46 2010 [VMM][I]: Loading driver: vmm_kvm (KVM)
Fri Jan 15 18:16:47 2010 [VMM][I]: Driver vmm_kvm loaded.
Fri Jan 15 18:16:47 2010 [VMM][I]: Loading driver: vmm_ec2 (XML)
Fri Jan 15 00:16:47 2010 [InM][I]: Loading Information Manager drivers.
Fri Jan 15 00:16:47 2010 [InM][I]: Loading driver: im_kvm
Fri Jan 15 00:16:47 2010 [InM][I]: Driver im_kvm loaded
Fri Jan 15 00:16:47 2010 [InM][I]: Loading driver: im_ec2

Creative Commons Attribution Share Alike (CC-BY-SA)

  Amazon EC2 cloud is manage by OpenNebula as any other
cluster node

  You can use several accounts by adding a driver for each account
(use the arguments attribute, -k and -c options). Then create a
host that uses the driver

  You can use multiple EC2 zones, add a driver for each zone (use
the arguments attribute, -u option), and a host that uses that driver

  You can limit the use of EC2 instances by modifying the IM file

  Lets create your EC2 hybrid cloud by adding a new host

$ onehost create ec2 im_ec2 vmm_ec2 tm_dummy

$ onehost list
 ID NAME RVM TCPU FCPU ACPU TMEM FMEM STAT
 0 84.21.x.y 0 200 200 200 2017004 1667080 on
 1 84.21.x.z 1 200 200 200 2017004 1681676 on
 2 ec2 0 500 500 500 8912896 8912896 on

Creative Commons Attribution Share Alike (CC-BY-SA)

  Virtual Machines can be instantiated locally or in EC2

  The template must provide a description for both
instantiation methods.

  The EC2 counterpart of your VM (AMI_ID) must be available
for the driver account

  The EC2 VM template attribute:

EC2 = [
 AMI = "ami_id for this VM",
 KEYPAIR = "the keypair to use the instance",
 AUTHORIZED_PORTS = "ports to access the instance",
 INSTANCETYPE = "m1.small...",
 ELASTICIP = "the elastic ip for this instance",
 CLOUD = "host (EC2 cloud) to use this description with"
]

Creative Commons Attribution Share Alike (CC-BY-SA)

  Add an EC2 counterpart to the ttylinux image

$vi ttylinux.one
#EC2 template machine, this will be use wen submitting this VM to EC2
EC2 = [AMI="ami-ccf615a5",
 KEYPAIR="keypair",
 AUTHORIZED_PORTS="22",
 INSTANCETYPE=m1.small]

#Add this if you want to use only EC2 cloud
REQUIREMENTS = "HOSTNAME = \"ec2\""

  Create the VM and check progress
$ onevm create ttylinux.one
$ onevm list
 ID USER NAME STAT CPU MEM HOSTNAME TIME
 16 oneadmin one-16 runn 0 0 ec2 00 00:00:35
$ ec2-describe-instances
RESERVATION r-5eff7536 418314910487 default
INSTANCE i-bac3f0d2 ami-0572946c pending
keypair0 m1.small 2010-01-14T23:32:35+0000 us-
east-1a aki-a71cf9ce ari-a51cf9cc monitoring-
disabled

$vi ttylinux.one
#EC2 template machine, this will be use wen submitting this VM to EC2
EC2 = [AMI="ami-ccf615a5",
 KEYPAIR="keypair",
 AUTHORIZED_PORTS="22",
 INSTANCETYPE=m1.small]

#Add this if you want to use only EC2 cloud
REQUIREMENTS = "HOSTNAME = \"ec2\""

Creative Commons Attribution Share Alike (CC-BY-SA)

  Log in the EC2 instance when running
$ onevm show 17
...
VIRTUAL MACHINE TEMPLATE
CPU=0.5
...
EC2=[
 AMI=ami-ccf615a5,
 AUTHORIZED_PORTS=22,
 INSTANCETYPE=m1.small,
 KEYPAIR=keypair]
IP=ec2-72-44-62-194.compute-1.amazonaws.com
 ...
REQUIREMENTS=HOSTNAME = "ec2"
VMID=17

$ ssh -i keypair.pem root@ec2-72-44-62-194.compute-1.amazonaws.com
Linux ip-10-212-134-128 2.6.21.7-2.fc8xen-ec2-v1.0 #2 SMP Tue Sep 1
10:04:29 EDT 2009 i686
root@ip-10-212-134-128:~#

This costs money!
$ onevm shutdown 17
$ onehost disable ec2
$ onehost list

PART V: Building your Public Cloud

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Creative Commons Attribution Share Alike (CC-BY-SA)

  You can use multiple interfaces for the Cloud
  Transparent to your setup:

  Hypervisor
  Storage Model
  Hybrid configuration

  Supports HTTP and HTTPS protocols
  EC2 authentication based on OpenNebula credentials
  Public Cloud users need an OpenNebula account

  Client tools uses EC2 libraries
  Potential integration with EC2 tools

(EC2_URL problems for example)
  Provided in the OpenNebula

distribution
  Includes a simple S3 replacement

Creative Commons Attribution Share Alike (CC-BY-SA)

  The EC2 service is configured in $ONE_LOCATION/etc/econe.conf

$ more econe.conf
OpenNebula administrator user, the one_auth contents
USER=oneadmin
PASSWORD=onecloud

OpenNebula sever contact information
ONE_XMLRPC=http://localhost:2633/RPC2

Host and port where econe server will run keep FQDNs
SERVER=node-y.opennebula.org
PORT=4567

Configuration for the image repository
IMAGE_DIR will store the Cloud images, check space!
DATABASE=/srv/cloud/one/var/econe.db
IMAGE_DIR=/srv/cloud/public_repo/

VM types allowed and its template file
VM_TYPE=[NAME=m1.small, TEMPLATE=m1.small.erb]

Creative Commons Attribution Share Alike (CC-BY-SA)

  You have to define the correspondence between types (simple)
and local instantiation of VMs (hard, you should be fine by now)

  Capacity allocated by this VM type (CPU, MEMORY)

  Your cloud requirements, e.g. force to use a given kernel (OS) or
place public VMs in a given set of cluster nodes (REQUIREMENTS)

  The network used by Public VMs (NIC)

  VM Types are defined in econe.conf. Templates for the VM
templates are in $ONE_LOCATION/etc/ec2query_templates

  Templates for VM Types are erb files <% Ruby code here %>, you
should not need to modify that.

Creative Commons Attribution Share Alike (CC-BY-SA)

  Let’s prepare the m1.small type of your cloud to use ttylinux.one
as a reference

$ more m1.small.erb

NAME = eco-vm

CPU = 0.1
MEMORY = 64

OS = [kernel = /srv/cloud/one/ttylinux-xen/vmlinuz-xen,
 initrd = /srv/cloud/one/ttylinux-xen/initrd.gz]

DISK = [source = <%= erb_vm_info[:img_path] %>,
 clone = yes,
 target = hda,
 readonly = no]

#You have to create this network, and it should be owned by oneadmin

NIC = [NETWORK = ”one-td"]

IMAGE_ID = <%= erb_vm_info[:img_id] %>
INSTANCE_TYPE = <%= erb_vm_info[:instance_type]%>

Creative Commons Attribution Share Alike (CC-BY-SA)

  Start the econe server

$ unset EC2_URL
$ econe-server start

$ lsof -i

Check $ONE_LOCATION/var/econe-server.log for errors

Creative Commons Attribution Share Alike (CC-BY-SA)

  The econe-tools are a subset of the functionality provided by the
onevm utility, and resembles the ec2-* cli

  Image related commands are:

  econe-upload, place an image in the Cloud repo and returns ID

  econe-describe-images, lists the images

  econe-register, register an image not really needed in 1.4

  Instance related commands are:

  econe-run-instances, starts a VM using an image ID

  econe-describe-instances, lists the VMs

  econe-terminate-instances, shutdowns a VM

  User authentication is based in the OpenNebula credentials

  AWSAccessKeyId is OpenNebula's username

  AWSSecretAccessKey is OpenNebula's password

Creative Commons Attribution Share Alike (CC-BY-SA)

HANDS ON

  Install the clients (./install –c ec2)

  Pass your credentials to the econe-tools by (in this order)

  Commands arguments (--access-key <username>,

 --secret-key <pass>)

  Environment EC2_ACCESS_KEY and EC2_SECRET_KEY

  Environment ONE_AUTH

  Point econe-tools to your target cloud

  Command arguments (--url <http|https>://<fqdn>:<port>) port
needed in not the default for the protocol

  EC2_URL environment

U: consegui$NUM NUM={01-30}
P: consegui2010

Creative Commons Attribution Share Alike (CC-BY-SA)

$ export EC2_URL="https:///devel.cloud.opennebula.org "
$ econe-describe-images –H –K consegui$NUM –S consegui2010
Owner ImageId Location

oneadmin 1 /srv/cloud/public_repo/1

$ econe-run-instances 1 –K consegui$NUM –S consegui2010
oneadmin 1 18 m1.small

$ econe-describe-instances –K consegui$NUM –S consegui2010
oneadmin 18 1 pending
192.168.169.5 m1.small

This is the local view not accessible to public cloud users
$ onevm list
 ID USER NAME STAT CPU MEM HOSTNAME TIME
 19 oneadmin eco-vm runn 0 65536 84.21.x.y 00 00:01:34

$ onevm show 19

More Information

More info, downloads, mailing lists at

Time? For Questions

EXTRAS

Constantino Vazquez
(tinova@fdi.ucm.es)

Universidad Complutense de Madrid

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

CONSEGÍ 2010

Brasilia-DF, 18-20 August 2010

Creative Commons Attribution Share Alike (CC-BY-SA)

  SSL security is handle by a proxy that forwards the request to the
EC2 Query Service and takes back the answer to the client

  Requirements:

  A server certificate for the SSL connections

  An HTTP proxy that understands SSL

  EC2Query Service configuration to accept petitions from the proxy

  Hands on... Install the proxy (lighttpd) and get the certificates for
your cloud

apt-get install lighttpd
apt-get install ssl-cert

/usr/sbin/make-ssl-cert generate-default-snakeoil
cat /etc/ssl/private/ssl-cert-snakeoil.key /etc/ssl/certs/ssl-cert-
snakeoil.pem > /etc/lighttpd/server.pem

Creative Commons Attribution Share Alike (CC-BY-SA)

  Hands on... configure the lighttpd proxy

vim /etc/lighttpd/lighttpd.conf
server.modules = (
 "mod_access",
 "mod_alias",
 "mod_accesslog",
 "mod_compress",
 "mod_proxy"
...
bind to port (default: 80)
server.port = 8443
...
proxy module
proxy.server = ("" =>
 ("" =>
 (
 "host" => "127.0.0.1",
 "port" => 4567
)
)
)
SSL engine
ssl.engine = "enable"
ssl.pemfile = "/etc/lighttpd/server.pem"

Creative Commons Attribution Share Alike (CC-BY-SA)

  Hands on... configure the econe server

  Hands on... by pass the EC2 library URL checking

  Hands on... restart services (lighttpd and econe-server) and try
your new SSL cloud access (https://node-x.opennebula.org:
8443)

$ vim /srv/cloud/one/etc/econe.conf

#SERVER=formiga-15.opennebula.org
SERVER=127.0.0.1
PORT=4567

SSL proxy that serves the API (set if is being used)
SSL_SERVER=formiga-15.opennebula.org

sudo vim /var/lib/gems/1.8/gems/amazon-ec2-0.7.9/lib/AWS/EC2.rb
Comment out line 12

$ vim /srv/cloud/one/etc/econe.conf

#SERVER=node-15.opennebula.org
SERVER=127.0.0.1
PORT=4567

SSL proxy that serves the API (set if is being used)
SSL_SERVER=node-15.opennebula.org

