
Session 6
Advanced Usage

OpenNebula Technology Days, 20-21 July 2010

Copyright 2002-2010 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved.
Creative Commons Attribution Share Alike (CC-BY-SA)

Javier Fontán
jfontan@fdi.ucm.es

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 Context contains data to be passed to the VM at boot time

#---------------------------------------
Context for the VM
values can be:
$<template_variable>
$<template_variable>[<attribute>]
$<template_variable>[<attribute>, <attribute2>=<value2>]
$<vm_id>.<context_var>
#---------------------------------------

CONTEXT = [
 var_1 = "value_1",#Will be in context.sh as var_1=”val_1” (sh syntax)
 var_n = "value_n",#Will be in context.sh as var_N=”val_N” (sh syntax)
 files = "space-separated list of paths to include in context device",
 target= "device to attach the context device"]

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 Hands on... Add custom ssh keys the VM image

 Check boot process of the ttylinux VM (systemrc.local) it will

-  mount iso (do it yourself and see the ISO layout...)

-  Source context.sh

-  In this example it will execute init.sh so you can try anything

CONTEXT = [
 files = "/srv/cloud/one/ttylinux-xen/init.sh /srv/cloud/
one/.ssh/id_rsa.pub",
 target = "hdc",
 root_pubkey = "id_rsa.pub"
]

$ more init.sh
#!/bin/bash
if [-f /mnt/context/context.sh]
then
 . /mnt/context/context.sh
fi
if [-f /mnt/context/$ROOT_PUBKEY]; then
 cat /mnt/context/$ROOT_PUBKEY >> /root/.ssh/authorized_keys
fi

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 Tunning the placement of VMs with the Match-making scheduler

 First those hosts that do not meet the VM requirements are filtered out
(REQUIREMENTS)

 RANK is evaluated for the remaining hosts

 That with the highest RANK is used for the VM

 Placement policies are specified per VM

 Hands on... try a simple VM pinning

 Hands on... try a simple load-aware policy

#---------------------------------------
Scheduler
#---------------------------------------
Use Host Monitor attributes
REQUIREMENTS = "Bool_expression_for_reqs"
RANK = "Arith_expression_to_rank_hosts"

REQUIREMENTS = "HOSTNAME=\”...\”"

RANK = FREECPU

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 You can customize your cloud by:

 Tunning or adapting the transfer operations to your storage back-
end

 Adding new monitorization probes to improve the VM placement

 Adjusting VM operations to your hypervisor installation

 Trigger custom actions on specific VM events (e.g. “on VM creation
update the accounting DB” or “on VM shutdown send an email”)

 You can extend your cloud by:

 Developing new drivers for other hypervisors

 Developing new drivers for other storage back-ends

 Developing Cloud applications using the OpenNebula API or the
Cloud APIs

 OpenNebula is very scripting friendly, drivers can be written in any language. You can
modify the current ones or use them as templates for new ones.

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 OpenNebula issue generic storage operations (check
var/<vm_id>/transfer.*)

Transfer Driver process the core script

Action programs interpret the semantics
of generic actions depending on the
storage back.-end

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 OpenNebula requests the following abstract operations
over a VM image

 CLONE: This action will basically make a copy of the image
from ORIGIN to DESTINATION.

 LN: Creates a symbolic link in DESTINATION that points to
ORIGIN

 MKSWAP: Generates a swap image in DESTINATION. The size is
given in ORIGIN in MB.

 MKIMAGE: Creates a disk image in DESTINATION and populates
it with the files inside ORIGIN directory.

 DELETE: Deletes ORIGIN file or directory.

 MV: Moves ORIGIN to DESTINATION.

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 Actions are defined in

 $ONE_LOCATION/etc/tm_<storage>/tm_<storage>.conf

$ more /srv/cloud/one/etc/tm_ssh/tm_ssh.conf
CLONE = ssh/tm_clone.sh
LN = ssh/tm_ln.sh
MKSWAP = ssh/tm_mkswap.sh
MKIMAGE = ssh/tm_mkimage.sh
DELETE = ssh/tm_delete.sh
MV = ssh/tm_mv.sh

 Actions scripts are placed in

 $ONE_LOCATION/lib/tm_commands/<storage>/

$ ls /srv/cloud/one/lib/tm_commands/ssh/
tm_clone.sh tm_delete.sh tm_mkimage.sh tm_mv.sh
tm_context.sh tm_ln.sh tm_mkswap.sh

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 Hands on... Take a look to the tm_clone.ssh

. $TMCOMMON

...
log "Creating directory $DST_DIR"
exec_and_log "ssh $DST_HOST mkdir -p $DST_DIR"
...
case $SRC in
http://*)
 log "Downloading $SRC"
 exec_and_log "ssh $DST_HOST wget -O $DST_PATH $SRC"
 ;;

*)
 log "Cloning $SRC"
 exec_and_log "scp $SRC $DST"
 ;;
esac

exec_and_log "ssh $DST_HOST chmod a+w $DST_PATH"

 Hands on... Check the semantics of other operations for the ssh
storage, e.g. tm_ln.ssh

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

•  Make swap images local to the physical node executing
the VM

•  The script that generates swap images is called MKSWAP

•  Swap images are usually generated in VM directory

•  Link the newly create swap image to the VM directory

•  Make OpenNebula aware of compressed images

•  Images are cloned by CLONE script

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 OpenNebula gets host information by executing an arbitrary
number of probes

 A probe is a program that returns the monitorization metric in the
form

METRIC_NAME = VALUE

 Probes are configured in

 $ONE_LOCATION/etc/im_<hypervisor>/im_<hypervisor>.conf
And placed in

$ONE_LOCATION/lib/im_probes

 Probe information is mainly used for VM placement

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 Hands on... Take a look to the default probes defined for KVM

 Hands on... Create a new probe that returns the number of VMs
in RUNNING_VMS (e.g. you can use virsh, pgrep kvm...). Use the
new metric to pack VMs (RANK=RUNNING_VMS).

$ more /home/ruben/Virtual/one/etc/im_kvm/im_kvm.conf
cpuarchitecture=architecture.sh
nodename=name.sh
cpu=cpu.sh
kvm=kvm.rb

$ more name.sh
#!/bin/sh

echo HOSTNAME=`uname -n`

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

  IN: Only Ethernet frames from a MAC in Red LAN
  OUT: Only Ethernet frames from the MAC assigned by
OpenNebula

  Networks are isolated at layer 2
  You can put any TCP/IP service as part of the VMs (e.g.
DHCP, nagios...)

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 Requirements (this has to be done in all the cluster nodes)

 Check that ebtables package is installed

 Allow oneadmin to use the ebtables command through sudo

 Configure the hooks for OpenNebula

#visudo
...
oneadmin ALL=(ALL) NOPASSWD: /sbin/ebtables *
...

VM_HOOK = [
 name = "ebtables-start",
 on = "running",
 command = "/srv/cloud/one/share/hooks/ebtables-kvm",
 arguments = "one-$VMID",
 remote = "yes"]
VM_HOOK = [
 name = "ebtables-flush",
 on = "done",
 command = "/srv/cloud/one/share/hooks/ebtables-flush",
 arguments = "",
 remote = "yes"]

Advanced Usage Creative Commons Attribution Share Alike (CC-BY-SA)

 Hands on... Start a couple of VMs in Networks Red and Blue.

 Check the ebtables rules in the hosts

 Check connectivity between VMs

 Change the network mask of the VMs and check
connectivity

 Shutdown and check the ebtables rules

