OpenNebula/Reservoir Training, January 27-28 Brussels, Belgium

Session 1 Introduction, Installation and Configuration

Daniel Molina & Javier Fontán dmolina/jfontan@opennebula.org

OpenNebula.org

PROGRAMME

European Commission Information Society and Media

Copyright 2002-2011 © OpenNebula Project Leads (OpenNebula.org). All Rights Reserved. Creative Commons Attribution Share Alike (CC-BY-SA)

Cloud Computing in a Nutshell

	What	Who
Software as a Service	On-demand access to any application	End-user (does not care about hw or sw)
		skype Macebook.
Platform as a Service	Platform for building and delivering web applications	Developer (no managing of the underlying hw & swlayers)
		Windows [®] Azure [®]
Infrastructure as a Service	Delivery of a <i>raw</i> computer infrastructure	System Administrator (complete management of the computer infrastructure)
Physical Infrastructure		GOGRID intervices flexi scale [™]
)	

The laaS Clouds a Four Point Check List

- Simple Interface
- Raw Infrastructure Resources
 - Total control of the resources
 - Capacity leased in the form of VMs
 - Complete Service-HW decoupling
- Pay-as-you-go
 - A single user can not get all the resources
- Elastic & "infinite" Capacity

The Anatomy of an laaS Cloud

Why a Virtual Infrastructure Manager?

- VMs are great!!...but something more is needed
 - Where did/do I put my VM? (scheduling & monitoring)
 - How do I provision a new cluster node? (clone & context)
 - What MAC addresses are available? (networking)
- Provides a uniform view of the resource pool
- Life-cycle management and monitoring of VM
- The VIM integrates Image, Network and Virtualization

Planning the Installation: System Overview

- Choose your installation mode
 - system wide (/usr, /etc...)
 - self-contained (under \$ONE_LOCATION)
- Install software dependencies.
 - Check the documentation for platform specific notes installation
 nodes

http://opennebula.org/documentation:rel2.0:notes

Dependencies already installed in the Front-End and the Nodes

- The Users of the private cloud:
 - oneadmin: Account to run the daemons, manage the system and do all the low-level operations (e.g. start VMs, move images...).
 - Regular users: create and manage their own VMs and networks. Need to be defined in OpenNebula
- Installation layout
 - We will use the /srv/cloud directory to place the OpenNebula software
 - /srv/cloud/one will hold the OpenNebula installation

① The oneadmin account must be created system wide (i.e. front-end and all the nodes). You can use NIS, or a local account with the same ID's in all the hosts. Regular users do not need a UNIX account in the nodes, nor in the front-end.

• Hands on...

```
Fe$ su -
fe# groupadd -g 9000 oneadmin
fe# mkdir /srv/cloud
fe# useradd -d /srv/cloud/one -g oneadmin -u 9000 -s /bin/bash -m
oneadmin
Create the file-system hierarchy with the oneadmin account
fe# su - oneadmin
fe$ id
uid=9000(oneadmin) gid=9000(oneadmin) groups=9000(oneadmin)
fe$ mkdir SRC
We will place the OpenNebula source code in SRC
```

- Preparing the storage for the private cloud...
 - Image Repository: Any storage medium for the VM images (usually a high performing SAN)
 - OpenNebula supports multiple back-ends (e.g. LVM for fast cloning)
 - The front-end must have access to the repository
 - VM Directory: The home of the VM in the cluster node
 - Stores checkpoints, description files and VM disks
 - Actual operations over the VM directory depend on the storage medium
 - Should be shared for live-migrations
 - You can go on without a shared FS and use the SSH back-end
 - Defaults to \$ONE_LOCATION/var/\$VM_ID

Dimensioning the Storage... Example: A 64 core cluster will typically run around 80VMs, each VM will require an average of 10GB of disk space. So you will need ~800GB for /srv/cloud/one, you will also want to store 10-15 master images so ~200GB for image repository. A 1TB /srv/cloud will be enough for this example setup.

- In this course we will use NFS to share the VM directories
- The Image Repository is /srv/cloud/one/var/images

- Networking for the private cloud
 - OpenNebula management operations use ssh connections, it does not require a performing NIC
 - Image traffic, may require the movement of heavy files (VM images, checkpoints). Dedicated storage links may be a good idea
 - VM demands, consider the typical requirements of your VMs. Several NICs to support the VM traffic may be a good idea
 - OpenNebula relies on bridge networking for the VMs

Prepare NFS

.

Export /srv/cloud to your nodes

- only need /srv/cloud/one/var
- we also export \$HOME of oneadmin for easy SSH key configuration

fe# vi /etc/exports
/srv/cloud cetic-nodeXX(rw,async,no_subtree_check,no_root_squash)

fe# /etc/init.d/nfs reload

- Install software dependencies
 - We need SSH daemon running in the cluster nodes (check it!)
 - Runtime dependencies:
 - Ruby 1.8.x
- Users
 - Create the oneadmin account (use same UID and GID)

no# mkdir -p /srv/cloud no# groupadd -g 9000 oneadmin no# useradd -d /srv/cloud/one -g oneadmin -u 9000 -s /bin/bash oneadmin

• Add oneadmin to sudoers

```
no# tail -1 /etc/sudoers
oneadmin ALL=(ALL) ALL, NOPASSWD: /usr/sbin/xm, /usr/sbin/xmtop
```

- Storage
 - Recreate the installation layout and configure NFS to mount VM dirs

```
no# chown oneadmin:oneadmin /srv/cloud
no# vi /etc/fstab
frontend:/srv/cloud /srv/cloud nfs soft,intr,rsize=32768,wsize=32768,rw
0 0
no# mount /srv/cloud
```

Planning the Installation: SSH Configuration

• Enable password-less SSH access to cluster nodes for the oneadmin account:

```
DO NOT PROTECT PRIVATE KEY WITH A PASSWORD
fe$ ssh-keygen
Generating public/private rsa key pair.
• • •
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
fe$ cp ~/.ssh/id rsa.pub ~/.ssh/authorized keys
Tell ssh client not to ask to add hosts to known hosts (optional)
fe$ cat /srv/cloud/one/.ssh/config
Host *
    StrictHostKeyChecking no
TEST!
fe$ ssh localhost
```

fe\$ ssh host01

Planning the Installation: The Hypervisor ...

- Installing the Hypervisor
 - OpenNebula supports KVM, Xen and Vmware (even simultaneously). This course applies to KVM and Xen
 - Refer to the hypervisor documentation for additional (and better information) on setting up them.
 - In this course, we will use XEN.

Planning the Installation: The Hypervisor ...

- The software bridge is essential for having different VMs in the same host with connectivity
- Let's check the bridge in the hosts

no\$ /usr/sbin/brctl show								
Bridge name	bridge id	STP enabled	interfaces					
virbr0	8000.00000000000	yes						
xenbr0	8000.feffffffff	no	peth0					
			vif0.0					

Planning the Installation: The Hypervisor ...

• Test the installation for the oneadmin account

no\$ sudo	/us	sr/sbin/xr	n list		
Name	ID	Mem(MiB)	VCPUs	State	Time(s)
Domain-0	0	256	1	r	8.2

• This ensures that one admin is capable of running VMs

Planning the Installation: Checklist

Software Requirements						
ACTION	DONE/COMMENTS					
Installation type: self-contained, system-wide	self-contained					
Installation directory	/srv/cloud/one					
OpenNebula software downloaded to /srv/cloud/one/SRC						
sqlite, g++, scons, ruby and software requirements installed						
User Accounts						
ACTION	DONE/COMMENTS					
oneadmin account and cloud group ready in the nodes and front-end						
Storage Checklist						
ACTION	DONE/COMMENTS					
/srv/cloud structure created in the front-end						
/srv/cloud exported and accessible from the cluster nodes						
mount point of /srv/cloud in the nodes if different	VMDIR= <mount_point>/var/</mount_point>					
Cluster nodes Checklist						
ACTION	DONE/COMMENTS					
hostnames of cluster nodes						
ruby, sshd installed in the nodes						
oneadmin can ssh the nodes paswordless						