Contrail Summer School June 2011, France

Building Clouds with OpenNebula 2.2 and StratusLab

Javier Fontán Muiños dsa-research.org | OpenNebula.org

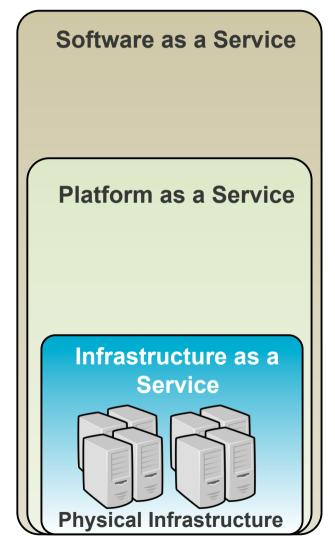
Distributed Systems Architecture Research Group Universidad Complutense de Madrid

Grid aware cloud stack

- MarketPlace with pregenerated Grid images
- Claudia service manager
- User friendly CLI to manage VMs and create new images
- Prepackaged software for common Linux distributions
- Quattor recipes to easily install and configure the software in a cluster
- X509/Grid credentials support
- VM management based on OpenNebula 2.2

StratusLab Project

Grid aware cloud stack



The version 0.4 of the software is available at http://stratuslab.eu

Version 1.0 is coming soon with utilities to upgrade previous installed versions.

Cloud Computing Disciplines

An Introduction to Cloud Computing

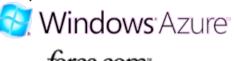
What

On-demand access to any application

End-user

(does not care about hw or sw)

Who



Platform for building and delivering web applications

Developer

(no managing of the underlying hw & swlayers)

Delivery of a *raw* computer infrastructure

System Administrator (complete management of the computer infrastructure)

Infrastructure as a Service (laaS)

An Introduction to Cloud Computing

Public Cloud

- Simple Web Interface
- Raw Infrastructure Resources
- Pay-as-you-go (On-demand access)
- Elastic & "infinite" Capacity

Infrastructure as a Service (IaaS)

An Introduction to Cloud Computing

Public Cloud

- Simple Web Interface
- Raw Infrastructure Resources
- Pay-as-you-go (On-demand access)
- Elastic & "infinite" Capacity

Private Cloud

A "Public Cloud behind the firewall"

- Simplify internal operations
- Dynamic allocation of resources
- Higher utilization & operational savings
- Security concerns

Infrastructure as a Service (IaaS)

An Introduction to Cloud Computing

Public Cloud

- Simple Web Interface
- Raw Infrastructure Resources
- Pay-as-you-go (On-demand access)
- Elastic & "infinite" Capacity

Private Cloud

- "Public Cloud behind the firewall"
- Simplify internal operations
- Dynamic allocation of resources
- Higher utilization & operational savings
- Security concerns

Hybrid Cloud

- Supplement the capacity of the Private Cloud
- Utility Computing dream made a reality!

Infrastructure as a Service (IaaS)

An Introduction to Cloud Computing

Public Cloud

- Simple Web Interface
- Raw Infrastructure Resources
- Pay-as-you-go (On-demand access)

• Elastic & "infinit Copy of the Copy of t

Private Cloud

"Public Cloud behind the firewall"

- Higher utilization & operational savings
- Security concerns

Hybrid Cloud

- Supplement the capacity of the Private Cloud
- Utility Computing dream made a reality!

Challenges of an laaS Cloud

An Introduction to Cloud Computing

I'm using virtualization/cloud, and plan a private Cloud (BUT's)

Where do/did I put my web server VM?

Monitoring & Scheduling

How do I provision a new VM?

Image Management & Context

Who have access to cloud (and What)?

User & Role Management

How do I create a new disk?

Storage

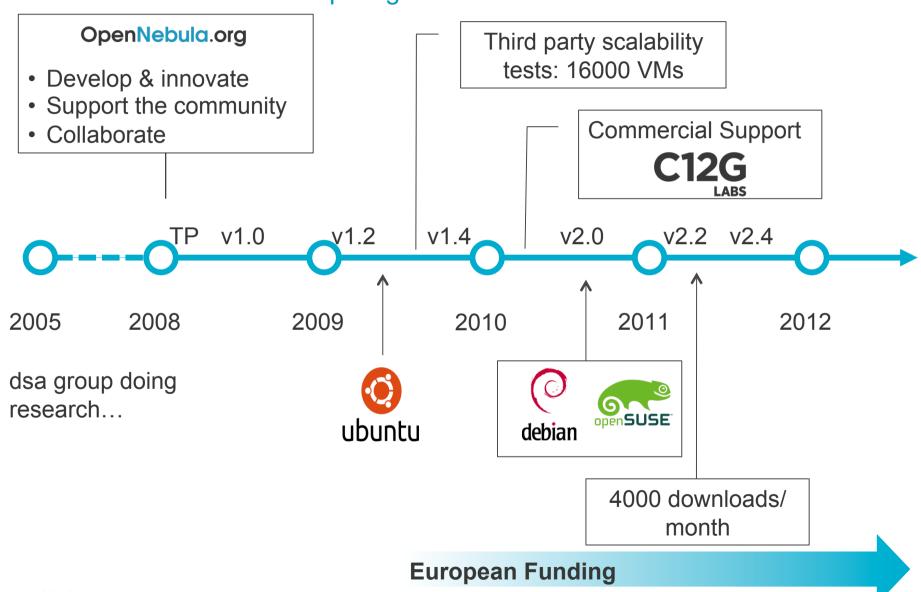
How do I set up networking for a multitier service?

Network & VLANs

How can I manage the distributed infrastructure?

Interfaces & APIs

Can I use hypervisor X?


Virtualization

Uniform management layer that orchestrates multiple technologies

History of OpenNebula.org

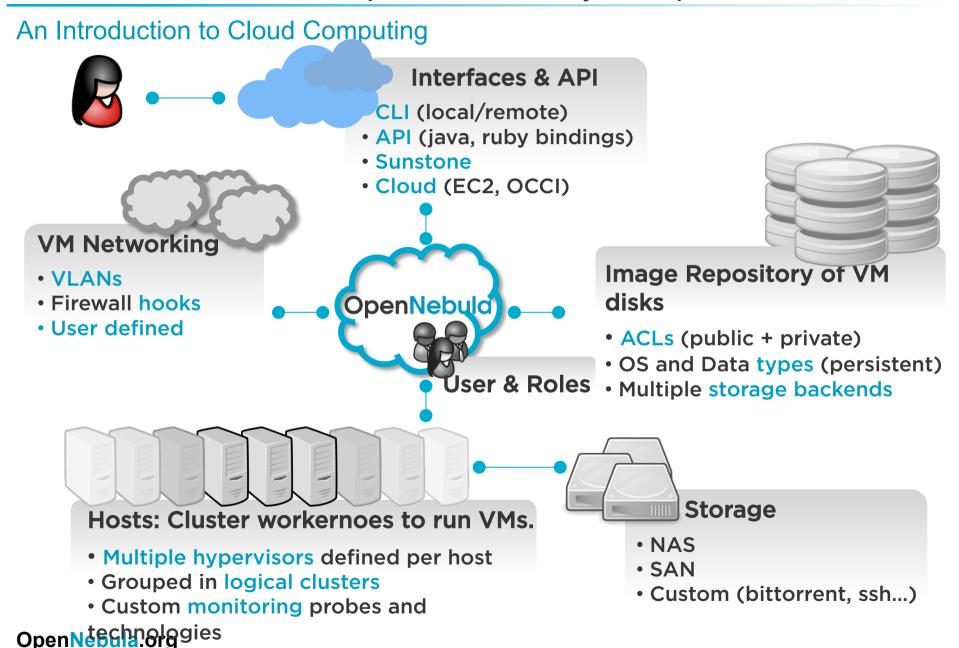
An Introduction to Cloud Computing

History of OpenNebula.org: Sample Users

An Introduction to Cloud Computing

Organizations Building Clouds for Development, Testing and

Projects Building an Open Cloud Ecosystem Around OpenNebula



Technical Overview of OpenNebula: Vision & Design Philosophy

An Introduction to Cloud Computing

- One solution can not fit all data-center, requirements and constraints
- Open, felxible and extensible architecture that allows multiple components to be orchestrated
- Ready for production
- Massively scalable deployments
- Open Source Apache License v2.0
- Provide basic components, but allow them to be easily replaceable

Technical Overview of OpenNebula: Key Components

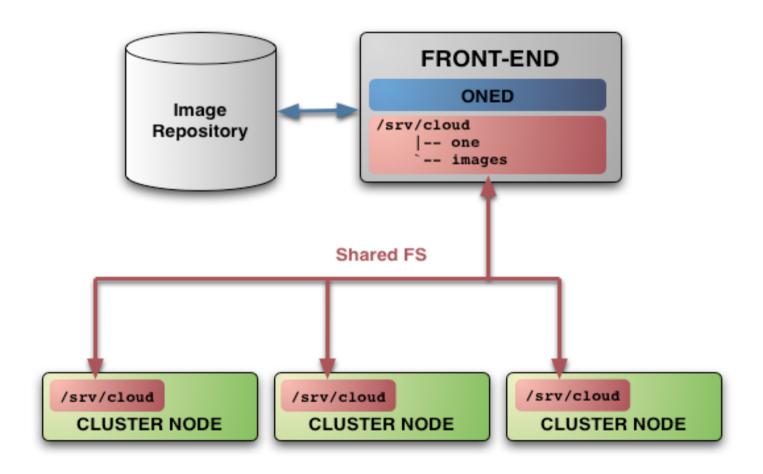
Component Overview

Component Overview Executes the OpenNebula Services Usually acts as a classical cluster front-end FRONT-END Repository of VM images ONED Multiple backends (LVM, iSCSI..) **Drivers Images** Usually in a separate host Modular components to interact with the cluster services • *Types:* storage, monitoring, virtualization and network SSH SSH **Images Images** Hypervisor Hypervisor **CLUSTER NODE 1 CLUSTER NODE 2** The same host can be can be a Provides physical resources to VMs the front-end and a node

Must have a hypervisor installed

Storage for the Priv ate Cloud

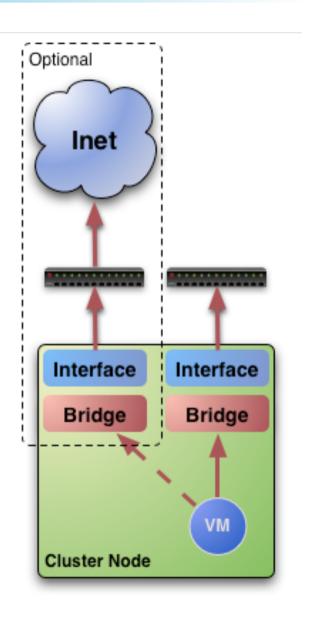
Component Overview

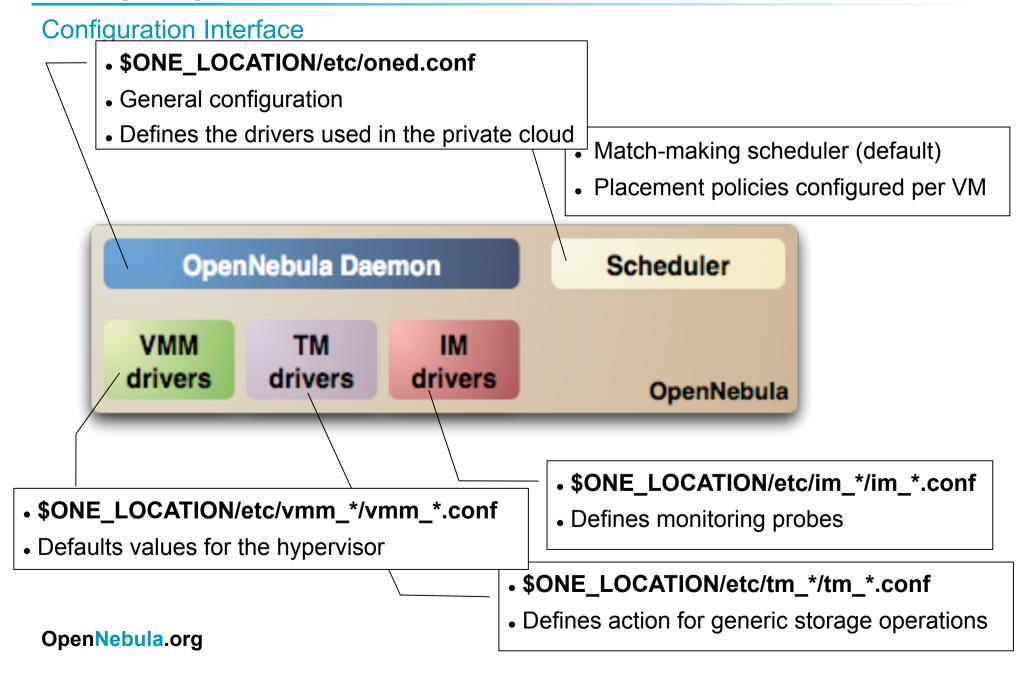

 Image Repository: Any storage medium for the VM images (usually a high performing SAN).

Cluster Storage

- OpenNebula supports multiple back-ends (e.g. LVM for fast cloning)
- VM Directory: The home of the VM in the cluster node
 - Stores checkpoints, description files and VM disks
 - Actual operations over the VM directory depends on the storage medium
 - Should be shared for live-migrations
 - You can go on without a shared FS and use the SSH back-end
 - Defaults to \$ONE_LOCATION/var/\$VM_ID

Storage for the Private Cloud


Example, a shared FS architecture



Networking for the Private Cloud

Component Overview

- OpenNebula management operations uses a ssh connections, it does not require a performing NIC
- Image traffic, may require the movement of heavy files (VM images, checkpoints). Dedicated storage links may be a good idea
- VM demands, consider the typical requirements of your VMs. Several NICs to support the VM traffic may be a good idea
- OpenNebula relies on bridge networking for the VMs

The oned.conf file

General configuration attributes

- Monitoring intervals:
 - HOST_MONITORING_INTERVAL
 - VM POLLING INTERVAL
- Global Paths
 - VM_DIR: Path to the VM directory in the cluster nodes.
 - SCRIPTS_REMOTE_DIR: to store driver actions in the cluster nodes
- PORT : Port where oned will listen for xml-rpc calls
- DEBUG_LEVEL
- DB, configuration for the DB backend driver:
 - Sqlite
 - MySQL
- VNC_BASE_PORT, for VNC port generation (BASE + ID)

The oned.conf file

- Information Drivers, to monitor cluster nodes
 - name: identifies the driver
 - executable: absolute or relative to \$ONE_LOCATION/lib/mads
 - arguments:
 - hypervisor probe set (remotes dir)
 - Number of retries (-r)
 - Concurrency (-t number of threads)

The oned.conf file

- Transfer Drivers, to interface with the storage
 - name: identifies the driver
 - executable: path to driver executable
 - arguments: storage commands configuration file

The oned.conf file

- Virtualization Drivers, to interface the hypervisors
 - name: identifies the driver
 - executable: absolute or relative to \$ONE_LOCATION/lib/mads
 - arguments: same as Information Drivers
 - default: default values for the hypervisor
 - type: format of the VM description used by the driver: xen, kvm or xml

Configuring the Private Cloud

Managing hosts and clusters

- Hosts are cluster worker-nodes defined with
 - Hostname of the node or IP
 - Information Driver to be used to monitor the host
 - Storage Driver to clone, delete, move or copy images into the host
 - Virtualization Driver to boot, stop, resume VMs in the host
- Hosts are managed with the onehost utility
 - Create & delete hosts
 - List the hosts
 - Show detailed information from a host
 - Enable/Disable a host

Configuring the Private Cloud

Managing Users

- Users are defined within OpenNebula by:
 - ID unique identifier for the user
 - Name of the user, used for authentication
 - Password used for authentication
- Users are managed with the oneuser utility
 - Create & delete users
 - List the users in the cluster

Virtual Networks

Overview

- A Virtual Network (vnet) in OpenNebula
 - Defines a separated MAC/IP address space to be used by VMs
 - A vnet is associated with a physical network through a bridge
 - Virtual Networks can be isolated (at layer 2 level)
- Virtual Network definition
 - Name, of the network
 - Type
 - **Fixed**, a set of IP/MAC leases
 - Ranged, defines a network range
 - **Bridge**, name of the physical bridge in the physical host where the VM should connect its network interface.
- Virtual Networks are managed with the onevnet utility

Images

Overview

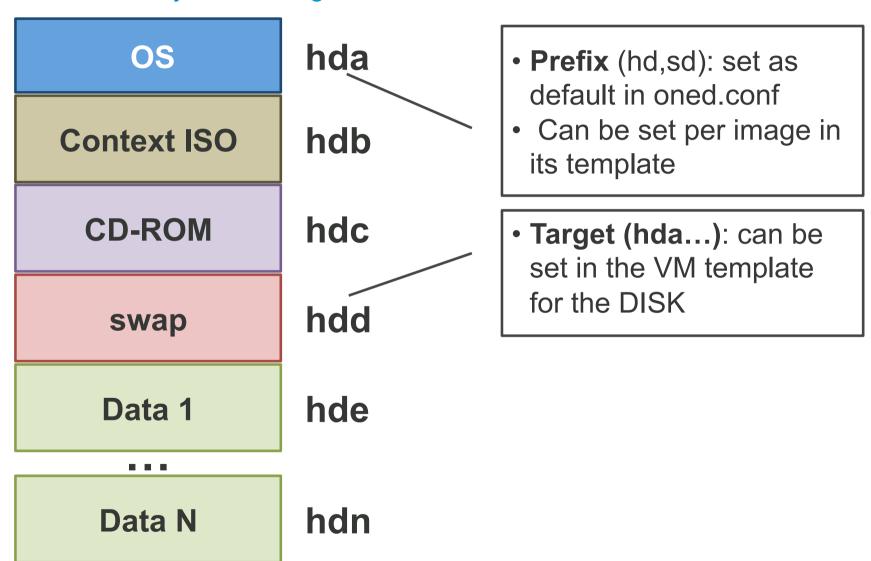

- An Image in OpenNebula's repository
 - A virtual machine disk to be used as OS or DATA device.
 - Images can be persistent and/or public
 - Images modifications can be saved as another image

Image Types:

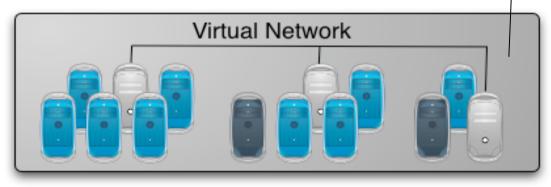
- OS: contains a working operative system
- CDROM: readonly data
- **DATABLOCK**: A storage for data. Can be created either from previous existing data, or as an empty drive.
- Images are stored in the repository

Images

Automatic Disk Layout for Images

Virtual Machines

Overview


- A Virtual Machine in OpenNebula
 - A capacity in terms memory and CPU
 - A set of NICs attached to one or more virtual networks
 - A set of disk images, to be "transfered" to/from the execution host.
 - A **state file** (optional) or recovery file, with the memory image of a running VM plus some hypervisor specific information.
- Virtual Machines are defined in a VM template
- Each VM has an unique ID in OpenNebula the VMID
- All the files (logs, images, state files...) are stored in \$ONE_LOCATION/var/<VMID>

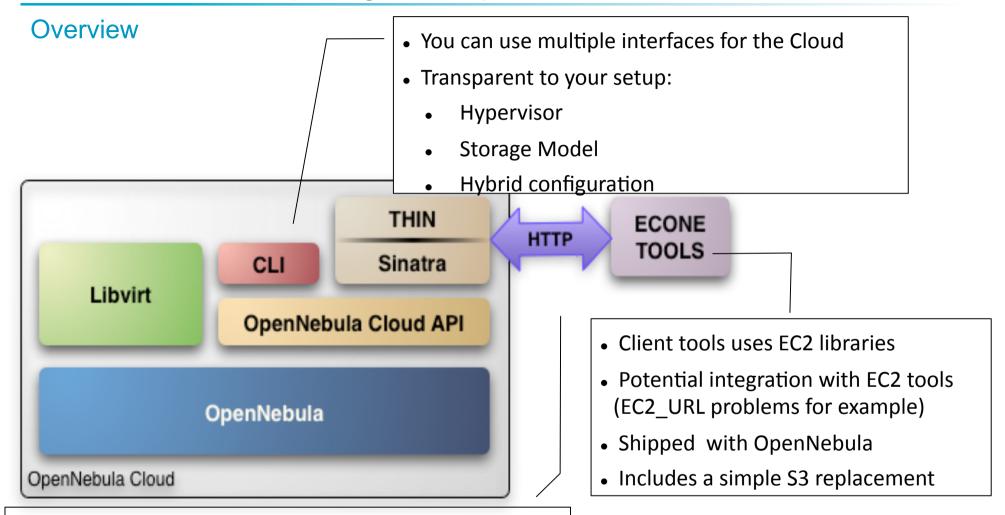
Hybrid Cloud Computing

Overview

- VMs can be local or remote
- VM connectivity has to be configured, usually VPNs

Virtual Infrastructure

OpenNebula



Local Physical Infrastructure

- External Clouds are like any other host
- Placement constraints
- OpenNebula distribution includes EC2 drivers

Public Cloud Computing with OpenNebula

- Supports HTTP and HTTPS protocols
- EC2 authentication based on OpenNebula credentials
- Public Cloud users need an OpenNebula account

Configuring the Public Cloud

Define the Instances

- You have to define the correspondence between types (simple) and local instantiation of VMs (hard, you should be fine by now)
 - Capacity allocated by this VM type (CPU, MEMORY)
 - Your cloud requirements, e.g. force to use a given kernel (OS) or place public VMs in a given set of cluster nodes (REQUIREMENTS)
 - The network used by Public VMs (NIC)
- VM Types are defined in econe.conf. Templates for the VM templates are in \$ONE_LOCATION/etc/ec2query_templates
- Templates for VM Types are erb files <% Ruby code here %>, you should not need to modify that.

Using the Public Cloud

The econe Toolset

- The econe-tools are a subset of the functionality provided by the onevm utility, and resembles the ec2-* cli
- EC2 ecosystem can be used (e.g. elasticfox, euca2ools...)
- Image related commands are:
 - econe-upload, place an image in the Cloud repo and returns ID
 - econe-describe-images, lists the images
 - econe-register, register an image
- Instance related commands are:
 - econe-run-instances, starts a VM using an image ID
 - econe-describe-instances, lists the VMs
 - econe-terminate-instances, shutdowns a VM

Using the Public Cloud

The econe Toolset

- User authentication is based in the OpenNebula credentials
 - AWSAccessKeyId is OpenNebula's username
 - AWSSecretAccessKey is OpenNebula's password
- Pass your credentials to the econe-tools by (in this order)
 - Command arguments (-K <username>, -S <pass>)
 - Environment EC2_ACCESS_KEY and EC2_SECRET_KEY
 - Environment ONE AUTH
- Point econe-tools to your target cloud
 - Command arguments (-U <http|https>://<fqdn>:<port>) port needed if not the default for the protocol
 - EC2_URL environment

Hands-on Session

Sunstone web interface

https://cloud.opennebula.org

USER: tutorial

PASSWORD: lero