Cloud Day 2011

KTH-SICS Cloud Innovation Center and EIT ICT Labs

Kista, Sweden, September 14th, 2011

Challenges in Hybrid and Federated Cloud Computing

Ignacio M. Llorente

Project Director

OpenNebula.org

Acknowledgments

The research leading to these results has received funding from the *Ministerio de Ciencia e Innovación* of Spain through research grant TIN2009-07146.

Challenges in Hybrid and Federated Cloud Computing

- IaaS Cloud Computing
- OpenNebula Cloud Management
- Cloud Federation
- Coupling Levels for Federation
- Common Architectures for Federation
- Challenges for Interoperability and Portability

Types of Cloud Services for Provision of IT Capabilities as a Service

What

Who

Software as a Service

On-demand access to any application

End-user (does not care about hw or sw)

facebook.

Platform as a Service

Platform for building and delivering web applications

Developer (no managing of the underlying hw & swlayers)

Raw computer infrastructure

System Administrator (complete management of the computer infrastructure)

Provision of Virtualized Resources as a Service

IaaS Cloud Computing Tool for Managing a Data Center's Virtual Infrastructure

Adaptable

Customizable and Extensible

Proven

Many Massive Scale Production Deployments

Powerful and Innovative

Advanced Enterprise-class Functionality

No Lock-in

• Platform Independent and Interoperable

Interoperable

Popular cloud APIs and standard based

Openness

- Fully open-source
- Apache license

Building the Industry Standard Open Source Cloud Computing Tool

Organizations Building Clouds and Innovative Projects

Organizations Building Clouds for Development, Testing and Production

Projects Building an Open Cloud Ecosystem Around OpenNebula

Different Models of Deployment

Model	Definition	Cloud Cases
Private	Infrastructure is owned by a single organization and made available only to the organization	 Optimize and simplify internal operation SaaS/PaaS support IT consolidation within large organizations (Government Clouds, University Clouds)
Public	Infrastructure is owned by a single organization and made available to other organizations over the Internet	 Commercial cloud providers, mostly hosting providers to offer low cost solutions with limited control/configuration and security/reliability good enough Science public clouds to enable scientific and educational projects or to experiment with cloud computing
Virtual Private	Infrastructure is owned by a single organization and made available to other organization over a dedicated private network	 Telecom cloud providers to offer premium solutions with additional control/ configuration and security/reliability

Next Step in the Evolution of an Utility

Utility Generation

Utility Distribution

Utility Grid

Benefits of Federation

Scalability

Cloudbursting to address peak demands

Collaboration

• Sharing of infrastructure between partners

Multi-site Deployments

Infrastructure aggregation across distributed data centers

Reliability

Fault tolerance architectures across sites

Performance

Deployment of services closer to end users

Cost

• Dynamic placement to reduce the overall infrastructure cost

Energy Consumption

Minimize energy consumption

The Multi-tier Cluster Use Case

Challenges in Hybrid and Federated Cloud Computing

Different Levels of Control, Monitoring, Cross-site Functionality and Security

Loosely Coupled Federation

Federation with a Cloud without Interoperation Support

Control	Basic operations over VMs (start, shutdown, restart)Different instance types
Monitoring & Accounting	Basic virtual resource monitoring (resource consumption)
Cross-site	• None
Security	 Single account representing the organization

Partially Coupled Federation

Federation with a Cloud with Partial Interoperation Support

Control	Advanced operations over VMs (live migration)VM location and affinity constraints
Monitoring & Accounting	 Advanced virtual resource monitoring (energy consumption, VM placement)
Cross-site	Virtual networksVirtual storage
Security	Framework agreement

Tightly Coupled Federation

Federation with a Cloud with Advanced Interoperation Support

Control	Placement on specific physical resourcesSame instance types
Monitoring & Accounting	Physical resource consumption
Cross-site	Live migrationHigh availability
Security	User space sharing

Organization of Multi-site Cloud Environments

Cloudbursting Architecture

Cloud Type	 Private cloud to scale out with public or virtual private cloud resources 	
Aim	Meet peak demands	
Coupling	 Loosely and partially coupled 	

Cloudbursting Architecture

EU grant agreement RI-261552 (2010-2012) e-Infrastructure **Enhancing Grid Infrastructures with Cloud Computing**

Simplify and optimize its use and operation, providing a more flexible, dynamic environment for scientists; and enhance existing computing infrastructures with "laaS" paradigms

www.StratusLab.eu

Cloud Broker Architecture

Cloud Type	User of several public clouds
Aim	 Cost, performance and reliability optimization
Coupling	Loosely coupled

Cloud Broker Architecture

Agreement 257386 (2010-2013)

New Infrastructure Paradigms

and Experimental Facilities

Building Service Testbeds on FIRE

Design, build and operate a multi-site cloud-based facility to support research across applications, services and systems targeting services research community on Future Internet

www.BonFIRE-Project.eu

Source: BonFIRE Project

Aggregated Cloud Architecture

Cloud Type	 Aggregation of different private clouds
Aim	 Sharing of resources between partners to meet peak demands
Coupling	 Partially or tightly coupled

Aggregated Cloud Architecture

Agreement 215605 (2008-2011)

Service and Sw Architectures and

Infrastructures

Resources and Services Virtualization without Barriers

Open source technology to enable deployment and management of complex IT services across different administrative domains

Multi-tier Cloud Architecture

Cloud Type	 Very large corporate clouds (private, public or virtual private) with several instances
Aim	 Scalability, isolation or multiple-site support
Coupling	Tightly coupled

Multi-tier Cloud Architecture

Multi-tier Cloud Architecture

Advanced Multi-Tenancy within each Zone

OpenNebula 3.0

- Typical scenario in large organizations and cloud providers
- On-demand provision of fully-configurable and isolated VDC with full control and capacity to administer its users and resources

Transparent Combination of Local Resources with Cloud Resources with No Changes

6. Common Execution Framework (Instance Type, QoS and Security)

Leveraging Existing Standards and Implementing Interoperation

Standardization

- Implement standards
- Integrate with standards

Which Standard?

- Different *de jure* standards
- Several de facto standards

Interoperation

- Implement adaptors
- Use transformers

Implementation of Common APIs and Adaptors

We Will Be Happy to Answer Any Question

The research leading to these results has received funding from the *Ministerio de Ciencia e Innovación* of Spain through research grant TIN2009-07146.