OSDC 2012 24th April, Nürnberg

Building Clouds with OpenNebula 3.4

Constantino Vázquez Blanco dsa-research.org | OpenNebula.org

Distributed Systems Architecture Research Group Universidad Complutense de Madrid

Building Clouds with OpenNebula 3.4 Preparing the Cloud for OpenNebula

Constantino Vázquez Blanco dsa-research.org | OpenNebula.org

Distributed Systems Architecture Research Group Universidad Complutense de Madrid

- Overview of OpenNebula Components
- Runtime & Compilation Requirements
- Users & File-System
- Storage for the Private Cloud
- Networking for the Private Cloud
- Hypervisor Configuration
- Checklist

OpenNebula.org

The Open Source Toolkit for Cloud Computing

Component Overview

Runtime Requirements

Cluster Front-end

- Choose your installation mode
 - system wide (/usr, /etc...)
 - self-contained (under \$ONE_LOCATION)
- Install software dependencies (runtime)

```
# apt-get install ruby
# apt-get install sqlite3
# apt-get install libxmlrpc-c3
```

install_gems.sh

Users & File-System Layout

Cluster Front-end

- The Users of the private cloud:
 - **oneadmin**: Account to run the daemons, manage the system and do all the low-level operations (e.g. start VMs, move images...).
 - Users: create and manage their own VMs and networks. *Need to be defined in OpenNebula*
- Installation layout Self-contained
 - We will use the /srv/cloud directory to place the OpenNebula software
 - /srv/cloud/one will hold the OpenNebula installation
 - /srv/cloud/one/var/datastores will contain all the datastores

Users & File-System Layout

Cluster Front-end

Installation layout

The oneadmin account must be created system wide (i.e. front-end and all the nodes) you can use NIS, or a local account with the same ID's in all the hosts. Users do not need a UNIX account in the nodes, nor in the front-end.

Storage for the Private Cloud

Component Overview

 Datastore: Any storage medium for the VM images (usually a high performing SAN). In this course a fs-based repo.

Cluster Storage

- OpenNebula supports multiple back-ends (e.g. LVM for fast cloning)
- From 3.4 onwards use multiple back-ends simultaneously
- VM Directory: The home of the VM in the cluster node
 - Stores checkpoints, description files and VM disks
 - Actual operations over the VM directory depends on the storage medium
 - Should be shared for live-migrations
 - You can go on without a shared FS and use the SSH back-end
 - **Defaults to** \$ONE_LOCATION/var/\$VM_ID

Example, a shared FS architecture

Dimensioning the Storage... Example: A 64 core cluster will typically run around 80VMs, each VM will require an average of 10GB of disk space. So you will need ~800GB for /srv/ cloud/one, you will also want to store 10-15 master images so ~200GB for /srv/cloud/one/var/ datastores. 1TB /srv/cloud will be enough for this example setup.


```
Configuring NFS backend
```

apt-get install nfs-kernel-server

Export /srv/cloud to your nodes

- only need /srv/cloud/one/var
- we also export \$HOME of oneadmin for easy SSH key configuration
- No need to export /srv/cloud/images

```
# vim /etc/exports
/srv/cloud 193.144.33.YY(rw,async,no_subtree_check,no_root_squash)
```

```
# service nfs-kernel-server restart
# service ufw stop
# iptables -F
```

Networking for the Private Cloud

Component Overview

- OpenNebula management operations uses a ssh connections, it does not require a performing NIC
- Image traffic, may require the movement of heavy files (VM images, checkpoints). Dedicated storage links may be a good idea
- VM demands, consider the typical requirements of your VMs. Several NICs to support the VM traffic may be a good idea
- OpenNebula relies on bridge
 networking for the VMs

Runtime Requirements

Cluster Worker-nodes

- Install software dependencies
 - We need SSH daemon running in the cluster nodes
 - Runtime dependencies:

apt-get install ruby

Users

• Create the oneadmin account (use same UID and GID)

```
# groupadd -g 3000 cloud
# useradd -d /srv/cloud/one -g cloud -u 3000 -s /bin/bash oneadmin
```

• Set language environment to english

cat /etc/default/locale
LANG="en_US.UTF-8"

Runtime Requirements

Configuring SSH access

• Enable password-less SSH access to cluster (oneadmin)

```
Do not protect the private key with a password
$ ssh-keygen
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
$ cp ~/.ssh/id rsa.pub ~/.ssh/authorized keys
Tell ssh client not to ask to add hosts to known hosts (optional)
$ cat /srv/cloud/one/.ssh/config
Host *
    StrictHostKeyChecking no
$ ssh 193.144.33.yy
```

You may need to exchange keys with the nodes (not here as we share /srv/cloud/one the oneadmin home, and so the ~/.ssh directory)

Hypervisor Configuration

Example, configuring KVM in the Worker-nodes

- Installing the Hypervisor
 - OpenNebula supports KVM, Xen and Vmware (*even simultaneously*). This course applies to KVM and Xen
 - Refer to the hypervisor documentation for additional (and better information) on setting up them.
- Setting up KVM and libvirt (Ubuntu 10.04)
 - Install the packages (should be already installed)

#apt-get install qemu-common qemu-kvm libvirt-bin

Hypervisor Configuration

Example, configuring KVM in the Worker-nodes

• Add oneadmin to the libvirt group

usermod -G kvm,libvirtd oneadmin

• Test the installation for the oneadmin account

\$ virsh -c qemu:///system list
Id Name State

#rm /etc/libvirt/qemu/networks/autostart/default.xml
#ifconfig virbr0 down
#brctl delbr virbr0
#service libvirt-bin restart

Installation Checklist

Preparing the cloud for OpenNebula

Software Requirements	
ACTION	DONE/COMMENTS
Installation type: self-contained, system-wide	self-contained
Installation directory	/srv/cloud/one
OpenNebula software downloaded to /srv/cloud/one/SRC	
sqlite, g++, scons, ruby and software requirements installed	
User Accounts	
ACTION	DONE/COMMENTS
oneadmin account and cloud group ready in the nodes and front-end	
Storage Checklist	
ACTION	DONE/COMMENTS
/srv/cloud structure created in the front-end	
/srv/cloud exported and accessible from the cluster nodes	
mount point of /srv/cloud in the nodes if different	VMDIR= <mount_point>/var/</mount_point>
Cluster nodes Checklist	
ACTION	DONE/COMMENTS
hostnames of cluster nodes	
ruby, sshd installed in the nodes	
oneadmin can ssh the nodes paswordless	

Building Clouds with OpenNebula 3.4 Preparing the Cloud for OpenNebula

Constantino Vázquez Blanco dsa-research.org | OpenNebula.org

Distributed Systems Architecture Research Group Universidad Complutense de Madrid

- Overview of OpenNebula Components
- Runtime & Compilation Requirements
- Users & File-System
- Storage for the Private Cloud
- Networking for the Private Cloud
- Hypervisor Configuration
- Checklist

OpenNebula.org

The Open Source Toolkit for Cloud Computing