First Workshop on
Automated Control for Datacenters and Clouds
(ACDC09)
June 19th, Barcelona, Spain

Elastic Management of Cluster-based Services in the Cloud

Rafael Moreno-Vozmediano, Ruben S. Montero, Ignacio M. Llorente
dsa-research.org
Distributed Systems Architecture Research Group
Universidad Complutense de Madrid
Contents

• Introduction
• Elastic management and implementation of clustered services
• Experimental results
• Conclusions
• Demo
Introduction

• Goals
• Deployment of clustered services on top of a virtualized infrastructure consisting of:
 • Local (in-house) virtual infrastructure
 • Cloud resource provider (Amazon EC2)
 • VM manager (the OpenNebula engine)
Introduction

• Motivation of the work
 • The proposed architecture offers several benefits
 • The virtualization layer allows to separate the infrastructure management (VM provisioning) from the service management
 • Elastic provisioning of virtual resources on demand, to adapt the infrastructure to the service requirements.
 • Fully transparent for the service itself, and independent of the type of service
 • The integration with the cloud provides additional capacity to the virtual infrastructure
Introduction

• **The VM Manager (OpenNebula)**

![Diagram showing OpenNebula components]

- **OpenNebula Core**: manages the life-cycle of a VM by performing basic VM operations (e.g. deployment, monitoring, or termination)
- **Capacity Manager (scheduler)**: Adjusts the placement of VMs based on a set of configurable provisioning policies
- **Virtualizer Access Drivers**: Pluggable drivers that provide an abstraction of the underlying virtualization layer (Xen, KVM, EC2), by exposing the basic functionality of the hypervisor or cloud interface

http://OpenNebula.org
Contents

- Introduction
- Elastic management and implementation of clustered services
- Experimental results
- Conclusions
- Demo
• Benefits

 • Elastic cluster capacity
 • The capacity of the cluster can be modified by deploying (or shutting down) virtual cluster nodes on demand

 • Cluster partitioning
 • The available physical and cloud resources can be used to deploy VMs bound to different cluster-based services
 • This approach isolates the different workloads and the performance assigned to each cluster

 • Heterogeneous configurations
 • The VMs of a service could have multiple software configurations
 • The different service images can be maintained with a minimal operational cost ("install once deploy many" approach)
Implementation of clustered services in the cloud

- Implementation of a computing cluster
 - Batch job submission system
 - Sun Grid Engine (SGE)
 - Cluster components
 - Front-end node: SGE master
 - Back-end nodes: SGE workers
Implementation of clustered services in the cloud

- Implementation of a web server cluster
 - Based on NGINX software
 - Cluster components
 - Front-end node: NGINX reverse proxy
 - Back-end nodes: NGINX web servers
Implementation of clustered services in the cloud

• The network infrastructure (i)
 • The service LAN
 • Every virtual node (both local and Amazon EC2 nodes) communicates with the front-end through the service LAN (using private addresses)
 • The local (in-house) virtual nodes
 • Are directly attached to the service LAN by means of a virtual bridge configured in every physical host
 • The remote (Amazon EC2) virtual nodes
 • Are connected to the service LAN by means of a virtual private network (VPN) tunnel
 • The VPN tunnel is implemented with the OpenVPN software
Implementation of clustered services in the cloud

• The network infrastructure (ii)
Contents

• Introduction
• Elastic management and implementation of clustered services
 • Experimental results
• Conclusions
• Demo
Experimental Results

- Computing cluster performance

![Graph showing throughput vs jobs for different configurations]

Throughput (jobs/sec.) vs Jobs for configurations 0L+4R, 4L+0R, 4L+4R, and 4L+8R.
Experimental Results

• **Web server cluster performance**

- **300 HTTP requests (static file - 1KB)**
- **300 HTTP requests (static file - 10KB)**
- **300 HTTP requests (static file - 100KB)**
- **300 HTTP requests (static file - 1000KB)**
Contents

• Introduction
• Elastic management and implementation of clustered services
• Experimental results
• Conclusions
• Demo
Conclusions

• We have analyzed the deployment of two cluster-based services on top of a virtualized infrastructure, with the capacity of integrating external cloud resources.
 • Computing cluster
 • Web server cluster
• This approach separates the resource provisioning from the service management, and provides important benefits:
 • Elastic capacity to adapt the cluster to its dynamic workload
 • Cluster partitioning to isolate it from other running services
 • Heterogeneous configurations tailored for each application class
• Performance results show
 • A sustained performance increment when adding a growing number of cloud nodes to the cluster
 • That proves the feasibility of the proposed architecture and provisioning model, and its capacity to support service elasticity.
Contents

• Introduction
• Elastic management and implementation of clustered services
• Experimental results
• Conclusions
• Demo
THANK YOU FOR YOUR ATTENTION

QUESTIONS?