CloudCamp – Campus Party July 2011, Valencia

Open Source Cloud Computing Management with OpenNebula

Javier Fontán Muiños

dsa-research.org | OpenNebula.org

Distributed Systems Architecture Research Group Universidad Complutense de Madrid

Cloud Computing Disciplines

An Introduction to Cloud Computing

	What	Who
Software as a Service	On-demand access to any application	End-user (does not care about hw or sw)
Platform as a Service	Platform for building and delivering web applications	Developer (no managing of the underlying hw & swlayers) Windows Azure force.com platform as a service
Infrastructure as a Service	Delivery of a <i>raw</i> computer infrastructure	System Administrator (complete management of the computer infrastructure) COGRID COGRID Services

Infrastructure as a Service (laaS)

An Introduction to Cloud Computing

Public Cloud

- Simple Web Interface
- Raw Infrastructure Resources
- Pay-as-you-go (On-demand access)
- Elastic & "infinite" Capacity

Infrastructure as a Service (laaS)

An Introduction to Cloud Computing

Public Cloud

• Simple Web Interface

- Raw Infrastructure Resources
- Pay-as-you-go (On-demand access)
- Elastic & "infinite" Capacity

amazon webservices

Private Cloud

A "Public Cloud behind the firewall"

- Simplify internal operations
- Dynamic allocation of resources
- Higher utilization & operational savings
- Security concerns

Infrastructure as a Service (laaS)

An Introduction to Cloud Computing

Public Cloud

Simple Web Interface

- Raw Infrastructure Resources
- Pay-as-you-go (On-demand access)
- Elastic & "infinite" Capacity

amazon webservices

Private Cloud

"Public Cloud behind the firewall"

- Simplify internal operations
- Dynamic allocation of resources
- Higher utilization & operational savings.

Security concerns

Hybrid Cloud

- Supplement the capacity of the Private Cloud
- Utility Computing dream made a reality!

Challenges of an IaaS Cloud

An Introduction to Cloud Computing

I'm using virtualization/cloud, and plan a private Cloud (BUT's)

Where do/did I put my web server VM? Monitoring & Scheduling

Who have access to cloud (and What)? User & Role Management

How do I provision a new VM? Image Management & Context

> How do I create a new disk? **Storage**

How do I set up networking for a multitier service?

Network & VLANs

How can I manage the distributed infrastructure? Interfaces & APIs

Can I use hypervisor X? Virtualization

Uniform management layer that orchestrates multiple technologies

History of OpenNebula.org

An Introduction to Cloud Computing

History of OpenNebula.org: Sample Users

An Introduction to Cloud Computing

Technical Overview of OpenNebula: Vision & Design Philosophy

An Introduction to Cloud Computing

- One solution can not fit all data-center, requirements and constraints
- Open, flexible and extensible architecture that allows multiple components to be orchestrated
- Ready for production
- Massively scalable deployments
- Open Source Apache License v2.0
- Provide basic components, but allow them to be easily replaceable

Technical Overview of OpenNebula: Key Components

An Introduction to Cloud Computing

Component Overview

Component Overview

Component Overview

Processes

Storage for the Private Cloud

Component Overview

- Image Repository: Any storage medium for the VM images (usually a high performing SAN).
- Cluster Storage
 - OpenNebula supports multiple back-ends (e.g. LVM for fast cloning)
- VM Directory: The home of the VM in the cluster node
 - Stores checkpoints, description files and VM disks
 - Actual operations over the VM directory depends on the storage medium
 - Should be shared for live-migrations
 - You can go on without a shared FS and use the SSH back-end
 - **Defaults to** \$ONE_LOCATION/var/\$VM_ID

Storage for the Private Cloud

Example, a shared FS architecture

Networking for the Private Cloud

Component Overview

- OpenNebula management operations uses a ssh connections, it does not require a performing NIC
- Image traffic, may require the movement of heavy files (VM images, checkpoints). Dedicated storage links may be a good idea
- VM demands, consider the typical requirements of your VMs. Several NICs to support the VM traffic may be a good idea
- OpenNebula relies on bridge
 networking for the VMs

Virtual Networks

Overview

- A Virtual Network (vnet) in OpenNebula
 - Defines a separated MAC/IP address space to be used by VMs
 - A vnet is associated with a physical network through a bridge
 - Virtual Networks can be isolated (at layer 2 level)
- Virtual Network definition
 - Name, of the network
 - Type
 - Fixed, a set of IP/MAC leases
 - Ranged, defines a network range
 - **Bridge**, name of the physical bridge in the physical host where the VM should connect its network interface.
- Virtual Networks are managed with the **onevnet** utility

Images

Overview

- An Image in OpenNebula's repository
 - A virtual machine disk to be used as OS or DATA device.
 - Images can be **persistent** and/or **public**
 - Images modifications can be saved as another image
- Image Types:
 - **OS**: contains a working operative system
 - CDROM: readonly data
 - **DATABLOCK**: A storage for data. Can be created either from previous existing data, or as an empty drive.
- Images are *stored* in the repository

Images

Automatic Disk Layout for Images

Virtual Machines

Overview

- A Virtual Machine in OpenNebula
 - A capacity in terms memory and CPU
 - A set of **NICs** attached to one or more virtual networks
 - A set of **disk images**, to be "*transfered*" to/from the execution host.
 - A state file (optional) or recovery file, with the memory image of a running VM plus some hypervisor specific information.
- Virtual Machines are defined in a VM template
- Each VM has an unique ID in OpenNebula the VMID
- All the files (logs, images, state files...) are stored in \$ONE_LOCATION/var/<VMID>

Hybrid Cloud Computing

Overview

• VM connectivity has to be configured, usually VPNs

Virtual Infrastructure

Public Cloud Computing with OpenNebula

- Supports HTTP and HTTPS protocols
- EC2 authentication based on OpenNebula credentials
- Public Cloud users need an OpenNebula account

StratusLab Project

Grid aware cloud stack

- MarketPlace with pregenerated Grid images
- Claudia service manager
- User friendly CLI to manage VMs and create new images
- Prepackaged software for common Linux distributions
- Quattor recipes to easily install and configure the software in a cluster
- X509/Grid credentials support
- VM management based on OpenNebula 2.2

Grid aware cloud stack

The version 0.4 of the software is available at <u>http://stratuslab.eu</u>

Version 1.0 is coming soon with utilities to upgrade previous installed versions.